
A C++ Concepts Primer:
defining and applying constraints

Erik Sven Vasconcelos Jansson
<erik.s.v.jansson@tum.de>
at Technical University of Munich

July 10, 2018

1 / 40

mailto:erik.s.v.jansson@tum.de

Presentation Outline

1 Generic programming in C++
unconstrained templates.

2 Problems and some solutions

read the documentation,
type traits plus SFINAE,
... arcane “magic” code.

3 How Concepts Lite improve

unconstrained templates.

4 Applying concept constraints

using requires clause,
overload with constraint,
operations on constraint.

5 Defining list of constraints
requires expressions,

simple,
type,
compound,
nested.

requirement evaluation,
naming with concept,
defining good concepts.

6 Standard Library Concepts

7 Terse syntaxes for C++20?

8 Summary, post-Rapperswil

2 / 40

Generic Programming

C++ is a rich multi-paradigm language, supporting both run time
and compile-time polymorphism. At compile-time, templates give
support for generic programming. However, templates are fragile,
unlike their run time counterpart, because they are unconstrained.
This leads to bad error messages, unclear interfaces, and violence.

Let’s build up an example of the current state of generics in C++,
and see where they succeed & fail; and where concepts may help!

3 / 40

Regular Programming
Generic Programming

Consider this function below, what does it do? How do you know?
Note: this is not a very good implementation, e.g. p > q is bad.

Listing 1: a “mysterious” function; can you figure out what this code is?

1 double f(const double* p,
2 const double* const q) {
3 double x { };
4 const double s = q - p;
5 while (p != q)
6 x += *p++;
7 return x / s;
8 }

4 / 40

Operator Overloading
Generic Programming

We can make “similarly behaving things”, have the same syntaxes.

Listing 2: boilerplate for the next example; a very incomplete point class.

1 struct point2 {
2 double x, y;
3 point2& operator+=(const point2& p);
4 };
5
6 point2& point2::operator+=(const point2& p) {
7 x += p.x; y += p.y;
8 return *this;
9 }

10
11 point2 operator/(const point2& p, double s) {
12 return { p.x / s, p.y / s };
13 }

5 / 40

Mysterious Functions?
Generic Programming

Consider this function below, what does it do? How do you know?
Note: this is not a very good implementation, e.g. p > q is bad.

Listing 3: another mysterious, yet strangely familiar function (déjà vu?).

1 point2 f(const point2* p,
2 const point2* const q) {
3 point2 x { };
4 const double s = q - p;
5 while (p != q)
6 x += *p++;
7 return x / s;
8 }

6 / 40

Template Parameters
Generic Programming

Obviously, both functions are finding the mean/average somehow.
Since both have the same syntax (thanks to operator overloading)
we can “lift” the implementation. Now, what is required from T?

Listing 4: natural generalization of the function from the previous slides.

1 template<typename T>
2 T mean(const T* begin,
3 const T* const end) {
4 T sum { };
5 const double size = end - begin;
6 while (begin != end)
7 sum += *begin++;
8 return sum / size;
9 }

7 / 40

Comically Bad Errors
Generic Programming

Because requirements of unconstrained templates aren’t explicit, a
user which hasn’t understood the interface may get horrible errors
because the syntax is checked after template instantiation. Which
might be deeply nested. Can’t we check before instantiating this?

Listing 5: classic code examples that give “bad” template error messages.

1 std::list l { 5, 1, 4, 3, 2 };
2 std::sort(l.begin(), l.end());
3 // ~48 lines of errors in gcc.
4
5 struct Widget { };
6
7 std::set<Widget> w;
8 w.insert(Widget{});
9 // ~412 lines here.

8 / 40

Parameter Predicates
Generic Programming

Here we have constrained the template parameter list, allowing the
compilers to check requirements before instantiating the template.

Listing 6: constraining the function template using a requires clause.

1 template<typename T> requires DefaultConstructible<T>
2 && SummableWith<T,T> &&
3 ScalableWith<T, double>
4 T mean(const T* begin,
5 const T* const end) {
6 T sum { };
7 const double size = end - begin;
8 while (begin != end)
9 sum += *begin++;

10 return sum / size;
11 }

9 / 40

Problems and Solutions

Before considering concepts, let’s look at how we currently solve
the problems we’ve discussed, and where these fall short. As you
will shortly see, specifying constraints by concept is vastly better.

Just read the documentation: good luck with that, even
when people read it, they might implement it incorrectly :(

Type traits and SFINAE: powerful, and works in many of
the cases we use concepts. Not easy to specify constraints.

Tag dispatching plus libraries: hacky, not discussed here.

10 / 40

Read the Specifications
Problems and Solutions

Expression Return Value is Requirements Specification

x == y bool convertible

== is an equivalence relation,
that is, satisfies the following:
→ for all x, x == x is satis.,
→ if x == y, then y == x,
→ if x == y, and y == z,

then x == z, follows too.

Table 1: EqualityComparable requirements from the C++ standard.

11 / 40

Type Trait and SFINAE
Problems and Solutions

Listing 7: expressing EqualityComparable as a SFINAE type trait.

1 template<typename T, typename U, typename = void>
2 struct is_equality_comparable : std::false_type { };
3
4 template<typename T, typename U>
5 struct is_equality_comparable<T, U,
6 typename std::enable_if<true,
7 decltype(std::declval<T&>() == std::declval<U&>()
8 ,(void)0)>::type> : std::true_type { };

12 / 40

Concepts to the Rescue
Problems and Solutions

Listing 8: EqualityComparable concept which “satisfies”∗ Table 1.

1 template<typename T, typename U>
2 concept EqualityComparable = requires(T x, U y) {
3 { x == y } -> bool;
4 { x != y } -> bool;
5 { y != x } -> bool;
6 { y == x } -> bool;
7 };

∗not really; see the Ranges TS, this is WeaklyEqualityComparable :)
13 / 40

Overloading by SFINAE?
Problems and Solutions

Listing 9: overloading the constructor by using SFINAE & type traits...

1 struct Factory {
2 enum { INTEGRAL, FLOATING } m_type;
3
4 template<typename T,
5 typename = std::enable_if<
6 std::is_integral_v<T>>
7 Factory(T) : m_type { INTEGRAL } {}
8 template<typename T,
9 typename = std::enable_if<

10 std::is_floating_point_v<T>>
11 Factory(T) : m_type { FLOATING } {}
12 };

14 / 40

Overloading by SFINAE
Problems and Solutions

Listing 10: ...doesn’t work if we don’t use a dummy for disambiguation.

1 struct Factory {
2 enum { INTEGRAL, FLOATING } m_type;
3 template<int> struct dummy { dummy(int) { } };
4 template<typename T,
5 typename = std::enable_if<
6 std::is_integral_v<T>>
7 Factory(T, dummy<0>=0) : m_type { INTEGRAL } {}
8 template<typename T,
9 typename = std::enable_if<

10 std::is_floating_point_v<T>>
11 Factory(T, dummy<1>=0) : m_type { FLOATING } {}
12 };

15 / 40

Concepts to the Rescue
Problems and Solutions

Listing 11: overloading based on constraint with the requires clause.

1 struct Factory {
2 enum { INTEGRAL, FLOATING } m_type;
3 template<typename T> requires Integral<T>
4 Factory(T) : m_type { INTEGRAL } {}
5 template<typename T> requires Floating<T>
6 Factory(T) : m_type { FLOATING } {}
7 };

16 / 40

Concepts Lite

An extension to C++ templates, allowing compile-time checking of
template parameters by constraining them via syntax requirements.

Applying constraints: by using the requires clauses. ← !

Defining requirements: with an requires expression. ← !

Constraints can be applied more intuitively with a terse syntax but
since it’s still controversial, we’ll present a subset: Concepts Zero.

History: the first concepts proposal came out in 2003, it was
merged & un-merged out of C++11 and postponed in C++17.

17 / 40

Applying Constraints

18 / 40

Constraining Template Parameters
Applying Constraints

Both type & non-type template parameters may be constrained by
using a requires clause. The constraint expressions on its right can
be anything that evaluates to bool at compile-time. Instantiation
occurs only when the entire constraint expression evaluates true!

Listing 12: constraining types & values by using the requires clause.

1 template<class T> requires Add<T>
2 T add(T x, T y) { return x + y; }
3
4 template<typename T> requires Number<T> class Matrix;
5
6
7
8 template<auto N> requires Even<N>
9 int square_even() { return N*N; }

19 / 40

Constraining Template Parameters
Applying Constraints

Both type & non-type template parameters may be constrained by
using a requires clause. The constraint expressions on its right can
be anything that evaluates to bool at compile-time. Instantiation
occurs only when the entire constraint expression evaluates true!

Listing 13: which even supports constraining C++20 generic lambdas!?

1 template<class T> requires Add<T>
2 T add(T x, T y) { return x + y; }
3
4 template<typename T> requires Number<T> class Matrix;
5 auto add = []<typename T>(T x, T y) requires Add<T> {
6 return x + y;
7 };
8 template<auto N> requires Even<N>
9 int square_even() { return N*N; }

20 / 40

Concept Overload Resolution Rule
Applying Constraints

Intuitively, the most constrained overload will be
chosen (i.e. with the most requirements). Since
this is now part of “official” overload resolution,
and isn’t a ad-hoc method like SFINAE; it gives
an uniform syntax with the rest of the language.
The amount of edge-cases, and hacks is reduced.

Listing 14: function overloading for advance based on type constraint.

1 template<typename T> requires ForwardIterator<T>
2 void advance(T& iterator, std::size_t distance);
3
4 template<typename T> requires RandomAccessIterator<T>
5 void advance(T& iterator, std::size_t distance);

21 / 40

Logical Operations on Constraints
Applying Constraints

The constraint expression can also be a logical
summation of constraints by using && and ||.
They are similar to logical operators, as should
be no surprise. These evaluate to true when:

conjunctions: both constraints satisfied,

disjunctions: at least one was satisfied.

1 template<typename T> requires is_integral_v<T> ||
2 is_floating_point_v<T>;
3 T add(T x, T y) requires Summable<T> { return x+y; }
4
5 template<auto N> requires Even<N> && Num<decltype(N)>
6 int square_even() { return N*N; } // value & type N

22 / 40

Defining Constraints

23 / 40

Requirements
Defining Constraints

A list of syntactic requirements for an template parameter can be
checked by using an requires expression. This expression evaluates
to true when all requirements are satisfied. Artificial “variables”
can be introduced, which have no linkage, storage or lifetime, and
are only there for writing convenience (see e.g. std::declval).

simple: just asserts the validity of some expression <expr>;,

type: checks the validity of some type by a typename prefix,

compound: validates the properties of some given expression,

nested: specifies more requirements based on local variables.

24 / 40

Simple Requirements
Requirements

Listing 15: simple requirements in an incomplete ForwardIterator.

1 template<typename T>
2 concept ForwardIterator = requires {
3 T{};
4 T();
5 };

25 / 40

Type Requirements
Requirements

Listing 16: type requirements in our incomplete ForwardIterator.

1 template<typename T>
2 concept ForwardIterator = requires {
3 typename iterator_traits<T>::value_type;
4 typename iterator_traits<T>::difference_type;
5 typename iterator_traits<T>::reference;
6 typename iterator_traits<T>::pointer;
7 typename iterator_traits<T>::iterator_category;
8 };

26 / 40

Compound Requirements
Requirements

Listing 17: compound requirements found in an ForwardIterator.

1 template<typename T>
2 concept ForwardIterator = requires(T x) {
3 { *x } -> iterator_traits<T>::reference;
4 { ++x } -> T&;
5 { x++ } -> T;
6 } && requires(T x, T y) {
7 { std::swap(x, y) } noexcept;
8 };

27 / 40

Nested Requirements
Requirements

Listing 18: usage of nested requirement in an Allocatable concept.

1 template<typename T>
2 concept Allocatable = requires(T x, std::size_t n) {
3 requires Same<T*, decltype(&x)>;
4 { x.~T() } noexcept;
5 requires Same<T*, decltype(new T)>;
6 requires Same<T*, decltype(new T[n])>;
7 { delete new T[n] };
8 { delete new T };
9 };

28 / 40

Naming Constraints
Defining Constraints

One can name complex constraints into a concept with concept.
It’s a glorified constexpr bool without Turing completeness :)

Listing 19: giving names to constraints by using the concept keyword.

1 template<typename T>
2 concept ForwardIterator = InputIterator<T> &&
3 DefaultConstructible<T> &&
4 EqualityComparable<T, T> &&
5 WeaklyIncrementable<T> &&
6 SwappableWith<T, T>;
7 template<typename T>
8 concept BidirectionalIterator = requires(T x) {
9 { --x } -> T&;

10 { x-- } -> T;
11 } && ForwardIterator<T>;
12 template<auto N> concept Even = (N % 2) == 0;

29 / 40

Defining “Good” Concepts
Defining Constraints

Some concepts are better than others. Many of the concepts here,
are not “good” concepts. The core idea is that concepts should be
defined to make types and algorithms ’plug compatible’. Which is:

to write algorithms that can be used for a variety of types, and

to define types that can be used with a variety of algorithms.

“the ideal is not minimal requirements, but requirements expressed
in terms of fundamental and complete concepts.” – B. Stroustrup

30 / 40

Standard Library Concepts

Writing many of the “boilerplate” concepts isn’t fun, and it’s easy
to get them wrong. Luckily, C++20 will be receiving a bunch from
the Ranges TS. Many of these we’ve defined in this presentation!!

Core Comparison Object Callable

Same Boolean Copyable Invocable
Integral EqualityComparable Movable Predicate

Swappable StrictTotallyOrdered Regular Relation
Constructible + · · ·With variants! Semiregular WeakOrder

Table 2: excerpt of the concept groups from the <concepts> header.

31 / 40

Ranges TS Library
Standard Library Concepts

Many of the remaining concepts are found in the ranges library, by
Eric Niebler, under the <ranges> header. e.g InputIterator.
Along with them, we’ll get a concepts-ready STL for C++20, which
enable cool things like lazy evaluation by using range views/actions.

Listing 20: example of the composability possibilities of range adaptors.

1 std::vector v { 10, 2, 6, 10, 4, 1, 9, 5, 8, 3 };
2 v = std::move(v) | action::sort | action::unique;
3 // ---> v = { 1, 2, 3, 4, 5, 6, 8, 9, 10 } <---
4 auto range_of_v = v | view::remove_if([](int i) {
5 return i % 2 == 1; })
6 | view::transform([](int i) {
7 return to_string(i); })
8 | view::take(4);
9 // ---> range_of_v = { "2", "4", "6", "8" } <---

32 / 40

Terse Syntaxes

Natural syntax by Bjarne Stroustrup et al., which was part of
the Concepts TS, and is implemented in gcc’s -fconcepts.
Issues was related to ambiguous syntax and introducer syntax.

Concepts in-place syntax by Herb Sutter. In order to “gain”
more consensus, removed ambiguity and dependent binding. It
is forward-compatible with Bjarne syntax, but is a bit verbose.

Adjective syntax variants by Thomas Köppe et al., after the
Rapperswil “Bjarne / Herb stand-off”, a new syntax: YAACD.
It’s essentially a constrained auto, and handles simpler cases.

33 / 40

Natural Syntax
Terse Syntaxes

1 template<typename T> requires Sortable<T>
2 void sort(T& range);
3
4 template<Sortable T>
5 void sort(T& range);
6 void sort(Sortable& range);
7 void sort(RandomAccessIterator begin,
8 RandomAccessIterator end);
9 auto sort = []<Sortable T>(T& r) { };

10 auto sort = [](Sortable& r) { };
11
12 BidirectionalIterator it = l.begin();
13
14 Mergeable{I1, I2, O}
15 O merge(I1 f1, I1 l1, I2 f2, I2 l2, O d);

34 / 40

Concepts In-Place Syntax
Terse Syntaxes

1 template<typename T> requires Sortable<T>
2 void sort(T& range);
3
4 template<Sortable{T}>
5 void sort(T& range);
6 void sort(Sortable{}& range);
7 void sort(RandomAccessIterator{T} begin,
8 T end);
9 auto sort = []<Sortable{T}>(T& r) { };

10 auto sort = [](Sortable{}& r) { };
11
12 BidirectionalIterator{T} it = l.begin();
13
14 template<Mergeable{I1, I2, O}>
15 O merge(I1 f1, I1 l1, I2 f2, I2 l2, O d);

35 / 40

Constrained auto Syntax
Terse Syntaxes

1 template<typename T> requires Sortable<T>
2 void sort(T& range);
3
4 template<Sortable T>
5 void sort(T& range);
6 void sort(Sortable auto& range);
7 template<RandomAccessIterator T>
8 void sort(T begin, T end);
9 auto sort = []<Sortable T>(T& r) { };

10 auto sort = [](Sortable auto& r) { };
11
12 BidirectionalIterator auto it = l.begin();
13 template<class I1, class I2, typename O>
14 requires Mergeable<I1, I2, O>
15 O merge(I1 f1, I1 l1, I2 f2, I2 l2, O d);

36 / 40

Concepts Summary
With post-Rapperswil Status!

Generic programming for C++ uses unconstrained templates,
which leads to horrible error messages, and fragile interfaces.

Existing techniques (like SFINAE) are either insufficient, not
easy to define, or have laughably obscure edge-cases when it
comes to defining, and using template parameter constraints.

With concepts we can constrain template parameters but not
have to suffer from the problems above, by using its features:

requires clauses, requires expressions & terse syntaxes.

Generic programming in C++20 is a lot nicer using concepts!

Status: Concepts, SLC/Ranges, Contracts, likely for C++20!

37 / 40

Questions?

38 / 40

References

Bjarne Stroustrup.

Concepts: The Future of Generic Programming.
Technical report, P00557R1, 2017-01-31.
https://wg21.link/p00557r1.

Bjarne Stroustrup.

A Minimal Solution to Concepts Syntax Problems.
Technical report, P1079R0, 2018-05-06.
https://wg21.link/p1079R0.

Herb Sutter.

Concepts In-Place Syntax.
Technical report, P0745R1, 2018-04-29.
https://wg21.link/p0745r1.

Working Draft, C++ Extension for Concepts.

Technical report, N4553, 2015-10-02.
https://wg21.link/n4553.

Wording Paper, C++ Extension for Concepts.

Technical report, P0734R0, 2017-07-14.
https://wg21.link/p0734r0.

Voutilainen, Köppe, Sutton, Sutter, Stroustrup etal.

Yet Another Approach for Constrained Declarations.
Technical report, P1141R0, 2018-06-23.
https://wg21.link/p1141R0.

39 / 40

https://wg21.link/p00557r1
https://wg21.link/p1079R0
https://wg21.link/p0745r1
https://wg21.link/n4553
https://wg21.link/p0734r0
https://wg21.link/p1141R0

Acknowledgements

Concepts Lite in Practice by R. Orr (2016) for giving a nice
and intuitive introduction to Concepts Lite TS at ACCU 2016.
Some of the examples are taken from his slides and the article.

Generic Programming with Concepts by A. Sutton (2015),
for presenting Concepts Lite from another angle. Many of the
motivating example are based on those in his presentation too.

I would like to thank P. Sommerlad, for hosting the wonderful
meeting in Rapperswil (2018), and allowing me to participate
in the discussion on Concepts along with other topics in EWG.

Finally, I would like to thank T. Lasser and the other teachers
and participants of “Discovering and Teaching Modern C++”!

40 / 40

