
Analysis of Test Coverage Data on
a Large-Scale Industrial System

by Erik Sven Vasconcelos Jansson
<erija578@student.liu.se>

Examinator: Lena Buffoni - Advisor: Bernhard Thiele
Department of Computer and Information Science

at Linköping University (LiTH), Sweden

September 15, 2016
1 / 25

Background
Required Theory

Importance of software testing, within
any mission critical software products.

See for e.g. NASA’s Climate Orbiter...

The code/test coverage metric can be
used in determining e.g. testing holes.

1 int factorial(int n) {
2 if (n == 0) return 1;
3 else if (n < 0) return -1;
4 return factorial(n - 1)*n;
5 }
6
7 int main(int, char**) {
8 assert(factorial(0) == 1);
9 assert(factorial(4) == 24);

10 return 0;
11 }

1
Climate Orbiter: http://mars.nasa.gov/msp98/

2 / 25

Background
Practical Context

Project at Ericsson (R&D) Linköping,
the given large-scale industrial system.

Production & unit tests: 960 KSLOC,
the target function tests: 564 KSLOC.

Tasks: integrate a coverage gathering,
and analysis system for function tests;
determine “feasibility” of the addition.

Goal: develop framework, upon which
test case selection/prioritization could
be derived in future work. PL3 ≈ 18h.

3 / 25

Motivation

Software testing is complicated and expensive,
research [B+81] has shown 50% project effort.

Coverage data provides insight into the nature
of tests; giving useful information about them.

Research in large-scale test coverage is scarce,
according to several papers such as [ABR+11]

Gathering & analysis is problematic [ABR+11]

Articles don’t present development experience.

4 / 25

Problems

Coverage gathering is problematic on large-scale systems:

Existing coverage tools don’t integrate well on all setups.
Performance and resource usage might be neg. affected.
Research question: how feasible is such an extension?

Analyzing raw test coverage data manually isn’t feasible:

Huge amounts of data produced for large-scale software.
Difficult to extract any meaningful test case properties.
Research question: what does the analysis tools find?

5 / 25

Challenges

Performance sensitive system.

Executes a series of daemons.

Coverage for a remote target.

Huge amount of profile data.

Isolate changes in behaviour.

1 static int bb[4] = {};
2 static int factorial(int n) {
3 ++bb[0];
4 if (n == 0) {
5 ++bb[1];
6 return 1;
7 } else if (n < 0) {
8 ++bb[2];
9 return -1;

10 }
11
12 ++bb[3];
13 return factorial(n - 1)*n;
14 }
15
16 int main(int, char**) {
17 assert(factorial(0) == 1);
18 assert(factorial(4) ==24);
19 printf("bb 0: %i", bb[0]);
20 printf("bb 1: %i", bb[1]);
21 printf("bb 2: %i", bb[2]);
22 printf("bb 3: %i", bb[3]);
23 return 0;
24 }

2
emacs?: videohive.net/item/burning-notebook/

6 / 25

Proposal

Instrument production code with coverage capabilities.

Measure the performance effects of these, statistically.

Add flushing signal, to deal with the daemon software.

Extend testing system to fetch coverage on test’s end.

Build/find tool to analyze, and locate test similarities.

7 / 25

Solution
Instrumentation

Production code is built with GCC → GCov is built-in,
& proven to have minimal performance impact, ≈ 3%.

e.g.: -fprofile-arcs -ftest-coverage -O0.

However, remote target → coverage is dumped wrong,
solved with GCOV PREFIX & GCOV PREFIX STRIP.

Enabled in the build system with: --coverage flag. (←)

8 / 25

Solution
Daemon Flushing

Several instrumented daemons on the target device.

Coverage information is dumped when terminated,
however, device reboots if this is done... Not good.

By calling gcov flush(), processes can dump,
without being terminated explicitly (no rebooting).

Synchronize flush: kill -sUSR1 $(pidof *),
handler enabled on all daemons by: --coverage. (←)

9 / 25

Solution
Automatic Fetching

Extends the Maven/Jcat testing flow.

Automatically flushes coverage down,
splitting the individual test case data.

Switched with fetch.coverage =
(testcase | testsuite). (←)

10 / 25

Solution
Analysis Methods

How to measure test case similarities?
see Jaccard index, Hamming distance.

Initial solution modified gcov-tool.

Current implementation scovat.py,
gives set operations on coverage data,
required by Hamming & Jaccard. (←)

J(A,B) =
|A ∩ B|
|A ∪ B|

, dJ = 1− J(A,B)

11 / 25

Solution
Usage Workflow

1 Build software with bb --coverage <recipe>, enabling
coverage instrumentations and daemon signal handlers setup.

2 Upload software packages with stp set up <deviceid>.

3 Enable the fetch.coverage=testcase testing property,
enabling the Maven/JCat testing framework fetch coverages.

4 Execute the desired test case/suite, e.g. PL2 on the devices.

5 Test coverage data is continuously fetched to the developer.

6 scovat.py -gb $BUILDLOC -o cache generates the
intermediate coverage format, used later for modifying data.

7 scovat.py -ao analysis cache/<A> cache/
gives Jaccard coefficient, and Hamming distance for (A, B).

12 / 25

Results
Performance

Software instrumentation haven’t made any tests unstable.

Fetching coverage from target → developer adds 20s time,
largely caused by bugs in the Trilead SSH implementation.

Consumes a fixed disk space of 8.3 MiB for each test case,
which is transferred & removed continuously when fetched.

The suite execution time, processor, and memory usage are
measured statistically after a t-distribution, α = 5%, n = 4.

13 / 25

Results
Suite Execution

Sampled Dataset Lower Time (h) Upper Time (h)

Instrumented 2.656 2.911
Non-Instrumented 2.075 2.260

14 / 25

Results
Memory Usage

15.0

16.0

17.0

18.0

19.0

20.0

0 2500 5000 7500 10000
Elapsed Test Suite Time (s)

A
ve

ra
ge

 M
em

or
y

U
sa

ge
 (

%
)

Samples
No. 1

No. 2

No. 3

No. 4

16.0

17.0

18.0

19.0

0 2000 4000 6000 8000
Elapsed Test Suite Time (s)

A
ve

ra
ge

 M
em

or
y

U
sa

ge
 (

%
)

Samples
No. 1

No. 2

No. 3

No. 4

15 / 25

Results
Memory Usage

Sampled Dataset Lower Usage (%) Upper Usage (%)

Instrumented 16.7663 18.8446
Non-Instrumented 17.8428 18.0185

16 / 25

Results
Processor Usage

0.00

5.00

10.0

15.0

20.0

0 2500 5000 7500 10000
Elapsed Test Suite Time (s)

A
ve

ra
ge

 P
ro

ce
ss

or
 U

sa
ge

 (
%

)

Samples
No. 1

No. 2

No. 3

No. 4

0.00

5.00

10.0

15.0

0 2000 4000 6000 8000
Elapsed Test Suite Time (s)

A
ve

ra
ge

 P
ro

ce
ss

or
 U

sa
ge

 (
%

)

Samples
No. 1

No. 2

No. 3

No. 4

17 / 25

Results
Processor Usage

Sampled Dataset Lower Usage (%) Upper Usage (%)

Instrumented 3.43483 4.12369
Non-Instrumented 4.28527 5.40044

18 / 25

Results
Measurements

Retrieved from the primary development test suite.

Upon producing lcov report with fetched coverage:

Statement coverage: 59.3% out of 96 158 (lines).
Function coverage: 70.7%, of 23 870 (functions).
Branch coverage: 24.6%, (retrieved from: Gcov).

19 / 25

Results
Interpretation

Demonstration of test similarity analysis, with 3 tests:

A: IPForwarding#testCliRejectsInvalidAddressOnDstMo,
B: IPForwarding#testCliRejectsInvalidAddressOnNexthopMo,
C: PL1#testPL1TestSuite, all three from Ericsson’s tests.

Both A and B should exercise very similar code locations.

While C exercises more varied locations, different from A.

Similarity leads to potential for test redundancy [CNM07].

Note!: exercising similar locations ; exactly same tests!

20 / 25

Results
Interpretation

Criterion dH(A,B) A ∩ B A ∪ B J(A,B)

Statement 0 400 400 1.00000
Function 0 90 90 1.00000
Branch 0 132 132 1.00000

Criterion dH(A,C) A ∩ C A ∪ C J(A,C)

Statement 21 691 398 22 089 0.01801
Function 5 369 90 5 459 0.01648
Branch 21 960 123 22 083 0.00557

21 / 25

Conclusions

Feasibility: deemed possible, since tests aren’t unstable;
however, it increases softw. execution time significantly.

Measurements: project has similar coverage to Google’s
average project (C) coverage (statement) measurement.

Interpretation: analysis tool/method, show locations of:
test case similarity, and pot. test redundancy, [CNM07].

Limitation: still requires engineers to verify redundancy.

Future Work: clustering, test selection & prioritization.

22 / 25

Summary
In a nutshell...

Software testing is hard; test coverage
give us valuable metadata about tests.

Gathering & analyzing code coverages
on large-scale systems proves difficult.

Integration of the system was feasible,
but prog. execution time was affected.

Metrics of a real, large-scale test suite
were given since such data was scarce.

Finally, analysis tool shows similarities
between test cases, which sifts results.

3
Thesis Defense: https://www.xkcd.com/1403/

23 / 25

Questions?

24 / 25

Bibliography

Yoram Adler, Noam Behar, Orna Raz, Onn Shehory, Nadav
Steindler, Shmuel Ur, and Aviad Zlotnick.
Code coverage analysis in practice for large systems.
In Proceedings of the 33rd International Conference on
Software Engineering, pages 736–745. ACM, 2011.

Barry W Boehm et al.
Software engineering economics, volume 197.
Prentice-hall Englewood Cliffs (NJ), 1981.

Emanuela G Cartaxo, Francisco G Oliveira Neto, and
Patŕıcia DL Machado.
Automated test case selection based on a similarity function.
GI Jahrestagung (2), 7:399–404, 2007.

25 / 25

