
Introduction to Machine Learning
Individual Laboration Report –1–

Erik Sven Vasconcelos Jansson
erija578@student.liu.se
Linköping University, Sweden

November 27, 2016

Assignment 1

Nobody likes e-mail spam, therefore methods for
autonomously predicting if a given e-mail is proba-
bly spam or not spam is an important task. This is
a classic example where machine learning is useful;
given a set of training data and testing data, can
we predict what is spam and not spam in the test-
ing set (without knowing the answer) by deriving
a hypothesis function built from the training data?

By using k-nearest neighbor classification, one
can derive if an e-mail is spam or not by simply
looking at similar e-mails/messages, and picking
the most likely solution by doing a “majority vote”.
First, a distance function needs to be implemented,
which is the cosine distance function in Equation 1,
whose implementation can be found in Listing 3,
but with a optimized solution using only matrices.

d(X,Y) = 1− XTY√∑
iX

2
i

√∑
i Y

2
i

(1)

After defining the distance function d(X,Y), one
can find the e-mail/message distance for each Yj in
respect to each Xi. Where X is the testing set and
Y the training set. Each row of the resulting matrix
contains the relative distance between Xi and ∀Yj .
Therefore, sorting each row Xi and picking the first
K elements gives the K closest messages from the
training set in respect to each testing element. By
using this, the k-nearest neighbors can be found,
and the prediction of Ŷ (spam, not spam) is done
by using Equation 2, where Ki classify as being Ci.

Ŷ = max
∀Ci

p(Ci|x), p(Ci|x) ∝ Ki ÷K (2)

The k-nearest neighbor algorithm is implemented
in Listing 2, in the function knearest(t,k,t’).
It works as previously described, where line 20 is
calculating the distance matrix and line 21 sorting
each row, so that all Y distances are relative to Xi.
Thereafter, in line 26-27 the classification is found
for the K-nearest neighbors of Xi. The mean value
is then taken, which is equivalent to Ki ÷K since
only two classifications exist (spam and not spam),
following a Cover et al. [CH67] K-NN descriptions.

Below follow confusion matrices & ROC curves,
and it seems knearest gives better results than kknn.
The first confusion matrix below belongs to the
testing data set while the second one belongs to the
training data set, and finally testing for kknn. The
misslassification rates for each respective confusion
matrix is: (0.202, 0.347) for training, (0.317, 0.347)
for testing and finally (0.345, 0.345) for kknn. No-
tice how predictions are more “accurate” in training.

k=5 false true
false 695 193
true 242 240

k=1 false true
false 639 178
true 298 255

k=5 false true
false 787 119
true 158 306

k=1 false true
false 939 2
true 6 423

k=5 false true
false 640 177
true 297 256

k=1 false true
false 640 177
true 297 256

1

The reason why this happens is because training
is being used by the predictor, and therefore (espe-
cially when k = 1) will give very “accurate” predic-
tions. This becomes a bit less apparent when we
enforce majority voting (taking into account near
neighbors), since the predictor doesn’t become as
biased towards the training data set as before (how-
ever it still seems k = 5 predicts better than testing
k = 5). Note in the ROC curve below that knearest
performs better than the kknn, at least in this case.

0.2 0.4 0.6 0.8

0
.2

0
.4

0
.6

0
.8

Specificity

S
e
n
s
it
iv

it
y

knearest

kknn

ROC Curve for the K−NN Spam Predictors

Assignment 2

Knowing how to infer what parameter θ most likely
produced a already given data vector x is useful to
gain more information about underlying processes.
In this case, that is expected lifetime of machines,
which has been assumed to follow p(x|θ) = θe−θx,
where x are the expected lifetimes of n machines,
which are independent and identically distributed.
The P.D.F. θe−θx is from a exponential distribution,
as seen in Jonsson et al. [JN99]: X ∼ Exp(µ, σ2)...

Estimation of the parameter θ can be done with
MLE (Maximum Likelihood Estimation), which is
usually done by using the log-likelihood of θ for a
given data vector x. The formula for log-likelihood
is shown in Equation 3, where the parameter θ can
then be estimated with θ̂mle by selecting the most
probable θ from a given set of thetas Θ, θi ∈ Θ, by
maximizing the average log-likelihood, as in Eq. 4.
This is seen in e.g. Myung [Myu03] and Wikipedia.

L(θ;x) = ln p(x|θ) =
n∑

i=1

ln p(xi|θ) (3)

θ̂mle = max
∀θ
L̂(θ;x), L̂ =

ln p(x|θ)
n

(4)

The actual implementation of these is found in
Listing 5, in the R functions lnlikelihood and
distribution (gives θe−θxi , ∀xi ∈ x). For the
MLE, lines 7-9 in Listing 4 calculate the average
log-likelihood and then picks the most probable θi.
The MLE for the dataset shown in Listing 6 for
when the entire dataset is used, and when only
|x| = 6 is taken, is shown in the table to the right.
As can be seen in the graph to the right, the θ̂mle
for when |x| = 6 will overshoot the value for when
the actual full dataset is used, therefore, it is less
reliable then when |x| = 48, not a good estimator.

Exp. Distribution MLE/MAP

p(x|θ), |x| = 48 1.1
p(x|θ), |x| = 6 1.8
p(x|θ)p(θ), |x| = 48 0.9

If additional information is know about the dis-
tribution, in this case p(θ) = λe−λθ where λ = 10,
the MAP (Maximum a Posteriori) estimation can
be used instead. The implementation can be found
in Listing 5, in the R function polikelihood.
The MAP for the x dataset is shown in the table,
and the graph for it is the green line to the right.
Finally, taking random samples from the distribu-
tion with θ̂mle produces the histogram to the right.

In conclusion, the parameter θ̂mle is a very good
estimator for x given the Exp. distribution p(x|θ).

Histogram over X~Exp of Full Log−Likelihood Estimation

Expected Machine Lifetime

F
re

q
u

e
n

c
y
 o

f
M

a
c
h

in
e

 L
ife

ti
m

e

0 1 2 3 4 5 6 7

0
5

1
0

1
5

2
0

2
5

3
0

2

0 2 4 6 8

−
2
5
0

−
2
0
0

−
1
5
0

−
1
0
0

−
5
0

0

theta−parameter

lo
g
e
/p

o
s
t−

lik
e
lih

o
o
d

x

Max Log/Posteriori−Likelihood Estimation

0 2 4 6 8

−
2
5
0

−
2
0
0

−
1
5
0

−
1
0
0

−
5
0

0

theta−parameter

lo
g
e
/p

o
s
t−

lik
e
lih

o
o
d

x

0 2 4 6 8

−
2
5
0

−
2
0
0

−
1
5
0

−
1
0
0

−
5
0

0

theta−parameter

lo
g
e
/p

o
s
t−

lik
e
lih

o
o
d

x

loge−likelihood, |x| = 48

loge−likelihood, |x| = 6

post−likelihood, |x| = 48

3

References
[BGRS99] Kevin Beyer, Jonathan Goldstein,

Raghu Ramakrishnan, and Uri Shaft.
When is “nearest neighbor” meaningful?
In International conference on database
theory, pages 217–235. Springer, 1999.

[CH67] Thomas Cover and Peter Hart. Nearest
neighbor pattern classification. IEEE
transactions on information theory,
13(1):21–27, 1967.

[JN99] Dag Jonsson and Lennart Norell. Ett
stycke statistik. Studentlitteratur, 1999.

[Mur12] Kevin P Murphy. Machine learning: a
probabilistic perspective. MIT univeristy
press, 1st edition, 2012.

[Myu03] In Jae Myung. Tutorial on maximum
likelihood estimation. Journal of mathe-
matical Psychology, 47(1):90–100, 2003.

4

Appendix

Listing 1: Spam Prediction Script

1 library("kknn")
2 source("distance.r")
3 source("knearest.r")
4
5 sensitivity <- function(x, y) {
6 tp <- sum(x == 1 & y == 1)
7 fn <- sum(x == 0 & y == 1)
8 return(tp / (tp + fn))
9 }

10
11 specificity <- function(x, y) {
12 tn <- sum(x == 0 & y == 0)
13 fp <- sum(x == 1 & y == 0)
14 return(tn / (tn + fp))
15 }
16
17 set.seed(12345) # For debugging.
18 data <- read.csv("spambase.csv")
19 # Pick randomly around half of the rows in dataset.
20 samples <- sample(1:nrow(data), floor(0.5*nrow(data)))
21 # Split given dataset evenly for training and tests.
22 learning <- data.matrix(data[samples,]) # Training.
23 testing <- data.matrix(data[-samples,]) # Testing.
24
25 # Predict spam for learning data K=5.
26 cat("\nknearest: predicting k = 5 (learning)\n")
27 k5 <- knearest(learning, 5, learning)
28 kr5 <- round(k5) # Classify >0.5 -> 1|0.
29 # Generate the confusion matrix for K=5.
30 cm5 <- table(kr5, learning[,ncol(learning)])
31 # Calculate given missclassification.
32 mc5 <- 1 - sum(diag(cm5)) / sum(cm5)
33 # Report confusion matrix and error.
34 print(cm5) ; print(mc5)
35
36 # Predict spam for learning data K=1.
37 cat("\nknearest: predicting k = 1 (learning)\n")
38 k1 <- knearest(learning, 1, learning)
39 kr1 <- round(k1) # Classify >0.5 -> 1|0.
40 # Generate the confusion matrix for K=1.
41 cm1 <- table(kr1, learning[,ncol(learning)])
42 # Calculate given missclassification.
43 mc1 <- 1 - sum(diag(cm1)) / sum(cm1)
44 # Report confusion matrix and error.
45 print(cm1) ; print(mc1)
46
47 # Predict spam for testing data K=5.
48 cat("\nknearest: predicting k = 5 (testing)\n")
49 k5 <- knearest(learning, 5, testing)
50 kr5 <- round(k5) # Classify >0.5 -> 1|0.
51 # Generate the confusion matrix for K=5.
52 cm5 <- table(kr5, testing[,ncol(testing)])
53 # Calculate given missclassification.
54 mc5 <- 1 - sum(diag(cm5)) / sum(cm5)
55 # Report confusion matrix and error.
56 print(cm5) ; print(mc5)
57

5

58 # Predict spam for testing data K=1.
59 cat("\nknearest: predicting k = 1 (testing)\n")
60 k1 <- knearest(learning, 1, testing)
61 kr1 <- round(k1) # Classify >0.5 -> 1|0.
62 # Generate the confusion matrix for K=1.
63 cm1 <- table(kr1, testing[,ncol(testing)])
64 # Calculate given missclassification.
65 mc1 <- 1 - sum(diag(cm1)) / sum(cm1)
66 # Report confusion matrix and error.
67 print(cm1) ; print(mc1)
68
69 cat("\nkknn: training and predicing with k = 1, 5\n")
70 m5 <- train.kknn(Spam ~ ., data = data.frame(learning), ks = c(5))
71 p5 <- predict(m5, data.frame(testing)) # Predict spam with k = 5.
72 pr5 <- round(p5) # Classify with the function >0.5 -> 1 else 0.
73 cm5 <- table(pr5, testing[,ncol(testing)])
74 # Calculate given missclassification.
75 mc5 <- 1 - sum(diag(cm5)) / sum(cm5)
76 # Report confusion matrix and error.
77 print(cm5) ; print(mc5)
78
79 cat("\nkknn: training and predicing with k = 1\n")
80 m1 <- train.kknn(Spam ~ ., data = data.frame(learning), ks = c(1))
81 p1 <- predict(m1, data.frame(testing)) # Predict spam with k = 1.
82 pr1 <- round(p1) # Classify with the function >0.5 -> 1 else 0.
83 cm1 <- table(pr1, testing[,ncol(testing)])
84 # Calculate given missclassification.
85 mc1 <- 1 - sum(diag(cm1)) / sum(cm1)
86 # Report confusion matrix and error.
87 print(cm1) ; print(mc1)
88
89 # Classify dataset by 0.05 steps...
90 response <- testing[,ncol(testing)]
91 classify <- seq(0.05, 0.95, by=0.05)
92 # Apply the classification rule for all.
93 kc5 <- sapply(k5, function(x) x > classify)
94 pc5 <- sapply(p5, function(x) x > classify)
95
96 # Find the sensitivity and specificity of knearest.
97 ksensitivity <- apply(kc5, 1, sensitivity, response)
98 kspecificity <- apply(kc5, 1, specificity, response)
99 psensitivity <- apply(pc5, 1, sensitivity, response)

100 pspecificity <- apply(pc5, 1, specificity, response)
101
102 plot(1 - kspecificity, ksensitivity, xlim=c(0.05,0.95), ylim=c(0.05,0.95), xlab="Specificity",

ylab="Sensitivity", type=’l’)
103 lines(1 - kspecificity, ksensitivity, col="Orange") ; lines(1 - pspecificity, psensitivity,

col="Purple")
104 legend(x = "bottomright", c("knearest", "kknn"), lty = c(1,1), lwd = c(2,2), col=c("Orange", "

Purple"))
105 lines(0:1, 0:1, col="Red", xlim=c(0.05, 0.95), ylim=c(0.05,0.95))
106 title("ROC Curve for the K-NN Spam Predictors")

Listing 2: K-Nearest Neighbor Algorithm Implementation

1 source("distance.r") # cos-distance d.
2
3 # spam(i, t) - gets spam vector in i.
4 spam <- function(indices, training) {
5 spamid <- ncol(training) # last.
6 return(mean(training[indices, spamid]))

6

7 }
8
9 # knearest(t, k, t’) - predicts values

10 # given in t’, for training data in t.
11 # Done with using k-nearest neighbors.
12 knearest <- function(train, k, test) {
13 # Don’t include the ’Spam’ column, not feature.
14 test_features <- data.matrix(test[,-ncol(test)])
15 train_features <- data.matrix(train[,-ncol(train)])
16
17 # Compute the distance matrix between train and test
18 # using the cosine distance formula (see distance.r)
19 # which is then sorted, for picking the k-neighbors.
20 distances <- distance(train_features, test_features)
21 sorted_distance_ids <- as.matrix(t(apply(distances, 2, order))[,1:k])
22
23 # Finally, retrieve if the training data is spam or
24 # not, selecting the k-closest classifications, for
25 # later determining the most likely classification.
26 spamv <- apply(sorted_distance_ids, 1, spam, train)
27 kspam_vector <- spamv # Select only first K.
28 mean_spam <- data.matrix(kspam_vector)
29 # Still need to classify data by e.g. >0.5 -> 1.
30 return(mean_spam) # This step is done in spam.r.
31 }

Listing 3: Cosine Cost/Distance Formula

1 # distance(X, Y) - distances between X, Y.
2 # Uses the usual cosine distance function.
3 # Batch operation into a matrix -> fast...
4 distance <- function(matrix_x, matrix_y) {
5 x_squared_sum <- rowSums(matrix_x^2)
6 y_squared_sum <- rowSums(matrix_y^2)
7 x_prime <- matrix_x / sqrt(x_squared_sum)
8 y_prime <- matrix_y / sqrt(y_squared_sum)
9 similarity_matrix <- x_prime %*% t(y_prime)

10 distance_matrix <- 1.0 - similarity_matrix
11 return(distance_matrix)
12 }

Listing 4: Inference Script for Machine Lifetime

1 source("likelihood.r") # sum of ln(p(x|theta)).
2 lifetimes <- read.csv("machines.csv") # Matrix?
3 parameter <- seq(0.1, 8.0, by=0.1) # Testing...
4 # Apply each parameter theta individually gives
5 # the log-likelihood for each of the parameters
6 p <- sapply(parameter,lnlikelihood,x=lifetimes)
7 average_lnlikelihoods <- p / dim(lifetimes)[1];
8 mle <- order(average_lnlikelihoods)[length(p)];
9 mle <- mle * 0.1 ; cat("MLE(theta): ",mle,"\n")

10
11 # Plot the relation between theta = logl.
12 plot(parameter,p, xlab="theta-parameter",
13 ylab = "loge/post-likelihood", type = "l",
14 xlim=c(0,8), ylim=c(-242,-2), col="orange")
15 points(mle, lnlikelihood(lifetimes, mle),

7

16 col="orange", lwd=c(2, 2), pch="x");
17 title("Max Log/Posteriori-Likelihood Estimation")
18
19 lifetimes6 <- t(data.matrix(lifetimes)[1:6])
20 p6 <- sapply(parameter,lnlikelihood,x=lifetimes6)
21 average_lnlikelihoods6 <- p6 / dim(lifetimes6)[1]
22 mle6 <- order(average_lnlikelihoods6)[length(p6)]
23 mle6 <- mle6 * 0.1 ; cat("MLE(theta): ",mle6,"\n")
24
25 # Plot the relation between theta = ln-l.
26 par(new=TRUE) # Seems a little bit hacky.
27 plot(parameter,p6, xlab="theta-parameter",
28 ylab = "loge/post-likelihood", type = "l",
29 xlim=c(0,8), ylim=c(-242, -2), col="purple")
30 points(mle6, lnlikelihood(lifetimes6, mle6),
31 col="purple", lwd=c(2, 2), pch="x")
32
33 po <- sapply(parameter, polikelihood, x=lifetimes)
34 average_polikelihoods <- po / dim(lifetimes)[1]
35 mpe <- order(average_polikelihoods)[length(po)]
36 mpe <- mpe * 0.1 ; cat("MPE(theta): ",mpe,"\n")
37
38 # Plot the relation between theta = po-li.
39 par(new=TRUE) # Seems a little bit hacky.
40 plot(parameter,po, xlab="theta-parameter",
41 ylab = "loge/post-likelihood",type="l",
42 xlim=c(0,8), ylim=c(-242, -2),
43 col = "Green")
44 points(mpe, polikelihood(lifetimes, mpe),
45 col="Green", lwd=c(2, 2), pch="x")
46 legend(x = "bottomleft", c("loge-likelihood, |x| = 48",
47 "loge-likelihood, |x| = 6",
48 "post-likelihood, |x| = 48"),
49 lty = c(1,1), lwd = c(2,2),
50 col=c("Orange", "Purple", "Green"))
51
52 random_exponential <- rexp(50, mle)
53 hist(random_exponential, main="Histogram over X~Exp of Full Log-Likelihood Estimation",
54 xlab = "Expected Machine Lifetime", ylab="Frequency of Machine Lifetime")

Listing 5: Max Log- and Posteriori-Likelihood Estimation Formula

1 distribution <- function(x, theta) {
2 # An exponential distribution.
3 exponential <- exp((-theta)*x)
4 return(theta*exponential)
5 }
6
7 lnlikelihood <- function(x, theta) {
8 p <- log(distribution(x, theta))
9 return(sum(p)) # log-likelihood.

10 }
11
12 polikelihood <- function(x, theta) {
13 jp<-prod(distribution(x, theta))
14 posterior <- 10*exp(-10*theta)
15 return(log(jp*posterior))
16 }

8

Listing 6: The Given Machine Lifetime CSV Dataset (Excerpt)

1 Length
2 0.394761404022574
3 1.17680263974688
4 0.768466353536656
5 0.126129498627658
6 0.053941871673606
7 0.839961192069958
8 2.83505971839929
9 1.2602572965046

10 4.41829496504448
11 0.737917928761447
12 0.282883279724047
13 0.405573239549994
14 1.38489578934096
15 1.41224693846584
16 1.81130825686632
17 1.58639749349854
18 1.0564000190196

9

Introduction to Machine Learning
Individual Laboration Report –2–

Erik Sven Vasconcelos Jansson
erija578@student.liu.se
Linköping University, Sweden

November 15, 2016

Assignment 1
Reducing the amount of relevant features by us-
ing feature selection is an important task in super-
vised machine learning. Since many features Fi are
more relevant than others, producing the optimal
feature set F̂ ⊆ F , reducing |F|, while also ε̂(ŷ,y),
the Mean Squared Error (M.S.E). Here, we build a
brute-force feature selection for linear models, using
k-folds cross validation for ranking feature subsets.

First, every possible feature combination Fi ⊆ F
is generated. Thereafter, each Fi is tested through
k-fold cross-validation, giving the mean ε̂i(ŷ,y) of
the feature subset Fi. By picking the feature subset
Fi which produces mini ε̂i(ŷ,y), the best features
are picked. In Listing 3 line 26 we generate all Fi,
which are then cross-validated in lines 30-31, then
in lines 34-43 the best feature subset F̂ is given by
evaluating the errors mini ε̂i(ŷ,y), where F̂ = Fi.

Now, how k-fold cross validation works is shown.
Roughly, Algorithm 1 demonstrates these steps, by
giving each individual Fi and respective XFi

, yFi

as arguments, the feature matrix and target vector.
For each Fi and k-fold iteration, a linear hypothesis
function is trained, predicting ŷ using Equations 1.
Thereafter, the M.S.E of the prediction ε̂i(ŷ,y), is
calculated by using Equation 3. Finally, the mean
of these ε̂i(ŷ,y) is the result of Fi cross-validation.

ŵt = (Xᵀ
t Xt)

−1Xᵀ
t yt (1)

ŷv = Xvŵt (2)

ε̂(ŷ,y) =
1

n

n∑

i=1

(ŷi − yi)2 (3)

Algorithm 1 K-Fold Cross-Validation (LinearM)
Require: feature matrixXF and target vector yF ,

given a feature selection F with cardinality |F|.
1: (Xi,yi)← split(XF ,yF , k) {Equally |XF |÷k}
2: for i← 1 to k do {Attempts every of k-folds}
3: Xt ← X1 ∪ · · · ∪Xk −Xi {Except fold i}
4: yt ← y1 ∪ · · · ∪ yk − yi {Except fold i}
5: ŵt ← (Xᵀ

t Xt)
−1Xᵀ

t yt {Train model}
6: ŷi ← Xiŵt {Predict target vector}
7: ε̂i(ŷi,yi)← 1

n

∑n
j=1(ŷj − yj)2

8: end for
9: return (

∑k
i=1 ε̂i(ŷi,yi))÷ k

The implementation of feature selection is found
under Listing 3, while k-fold cross-validation should
be found in Listing 2, linear regression in Listing 1.
Most information was derived from Andrew Ng’s
Regularization & Model Selection Handouts [Ng16].

Finally, testing the swiss dataset on our feature
selection implementation where F = U − Fertility,
gives F̂ = {3, 4, 5}, also shown in the Table 1 below.
Our F̂ seems reasonable, being Catholic is usually
attributed with low abortion rate, Infant Mortality
is directly linearly related as can be seen in the plot.

Feature Selection M.S.E.

{3, 4, 5} 90.6202
{1, 3, 4, 5} 111.411
{1, 2, 3, 5} 117.092

Table 1: where 1→ Agriculture, 2→ Examination,
3→ Education, 4→ Catholic, 5→ Infant Mortality.

1

0 10 20 30 40 50

4
0

6
0

8
0

1
0
0

Education

F
e
rt

ili
ty

0 20 40 60 80 100

4
0

6
0

8
0

1
0
0

Catholic

F
e
rt

ili
ty

15 20 25

4
0

6
0

8
0

1
0
0

Infant Mortality

F
e
rt

ili
ty

Figure 1: displays the relationships between feature
subsets of Size K and their Average M.S.E. Notice
that the expected error decreases by increases in k.

1 2 3 4 5

5
0

0
1

0
0

0
1

5
0

0

k

A
ve

ra
g

e
 M

.S
.E

.

Assignment 2
By using the tecator dataset, produced from obser-
vations on predicting fat content simply by using an
infrared absorbance spectrum (w. several channels),
we try to find relationships between their features.

Figure 2: relationship seems very close to linear.
Protein and Moisture seem to be related somehow,
at least in the provided meat observation datasets.

12 14 16 18 20 22

4
0

5
0

6
0

7
0

Protein

M
o
is

tu
re

Now we consider models Mi where Moisture is
normally distributed and related to Protein with a
polynomial function of steadily increasing degree.
Equation 4 displays this relation, MSE in Figure 3.

Moisture ∼ N (w0 +
6∑

i=1

(wi
i · Proteini), σ2) (4)

Figure 3: increasing complexity for the ith Model
seems to generate bias towards the training dataset,
motivating the higher validation dataset error rate.

1 2 3 4 5 6

3
1
.0

3
1
.5

3
2
.0

3
2
.5

3
3
.0

3
3
.5

3
4
.0

Model

M
.S

.E
.

Training

Validation

2

It seems the model overfits with more complexity.
The models Mi and their M.S.E. are calculated in
lines 24-39 in Listing 4, the assignment 2 scripts.
Also, according to the plot, the best model Mi is
located somewhere between i = 1 and 2, where the
lines intersect, producing the lowest M.S.E. for both
datasets, meaning there isn’t bias towards either D.

Now we perform feature/variable selection on the
features Channel1-100 and target/response of Fat.
By using stepAIC on a linear model generated with
R’s lm, a total of 64 variables were selected here.
This is done in lines 66-67 in Listing 4 (w. MASS).

By using the Ridge regression model on the same
features and response variables with glmnet library.
Figure 5 shows how coefficients relate to the log λ,
the log penalty. Notice how all coefficients converge
uniformly as higher penalty is added to the model.
This is being done in line 72 with λ = 0.0 (Ridge).

Thereafter, we use the LASSO regression model
with the same features and response variables. See
in Figure 5 how the coefficients converge iteratively
instead of simultaneously, comparing toward Ridge.
This can be explained graphically within Figure 4.

Figure 4: on the left we have Lasso and right Ridge.
Notice, that Lasso can set w1 → zero much faster.
Distributed under CC by Rezamohammadighazi.

Finally, we cross-validate the Lasso model with
k-fold cross-validation using the glmnet library. By
using k = 20 and using M.S.E. as the metric, we
find the last plot in Figure 5 which shows that the
chosen features (the dotted interval) are those that
produce the lowest M.S.E. Which are the 14 se-
lected features. This is shown in the lines 96-97
of Listing 4. Lastly, we compare these results with
those found with stepAIC. Notice how the Lasso
model with k-fold C.V. produced a much lower
number of selected features, 14, while stepAIC()
produced a total of 64. Lasso gives us less features.

Figure 5: below are the relationships between the
coefficients and the log(λ) penalty for Ridge and
Lasso regression (shown below in that exact order).
Notice how Ridge converges all of the coefficients si-
multaneously while Lasso does this step iteratively,
therefore, Lasso regression should converge “faster”.
Finally, the bottom plot displays how a Lasso C.V.
relates to the increasing of penalty factor of log(λ).

0 2 4 6 8

−
4

−
2

0
2

4
6

8

Log Lambda

C
o
e
ff
ic

ie
n
ts

100 100 100 100 100

1
2
3
4
5
6
7
8910111213

14
15
16
17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4041

42

43

44

45

46

47

48

49

50

51
525354
5556575859606162636465666768697071727374757677
78
79
80
81
82
83
84
858687888990
91
92
93
9495969798
99

100

−4 −3 −2 −1 0 1 2

−
5
0

0
5
0

1
0
0

Log Lambda

C
o
e
ff
ic

ie
n
ts

17 12 8 10 1 1 0

1

678910111213

14

15

16

17

18

1920
212223
24
39
40

41

4950

51
52

535455566061626398
99

100

−3 −2 −1 0 1 2

5
0

1
0
0

1
5
0

log(Lambda)

M
e
a
n
−

S
q
u
a
re

d
 E

rr
o
r

14 12 11 9 7 7 8 9 9 4 4 3 1 1 1 1 1 1 1

3

References
[HQ14] Trevor Hastie and Junyang Qian. Glm-

net Vignette. stanford.edu/~hastie/
glmnet/, 2014. [Online; on 15/11/2016].

[Ng16] Andrew Ng. Handouts: Regularization and
Model Selection. Stanford University, 2016.

4

Appendix

Listing 1: Estimation of the Linear Regression Model with a Hat Matrix

1 # ------linrhat(X, y)------
2 # Predicts the parameters w
3 # for the given features X,
4 # and the targets y through
5 # the use of an hat matrix.
6 linrhat <- function(X, y) {
7 # Nice hat good sir...
8 return(solve(t(X)%*%X)
9 %*% t(X)%*%y)

10 }

Listing 2: Implementation of a K-Fold Cross-Validation Algorithm forM

1 source("linrhat.r")
2
3 # ------disjoin(X, k)------
4 # Produce a k disjoint sets
5 # of the training matrix X.
6 # Useful for kfoldcv below.
7 # Note: only returns index.
8 disjoin <- function(X, k) {
9 row <- 1:nrow(X)

10 folds <- nrow(X) / k
11 # Resulting disjoints.
12 S <- matrix(, k, folds)
13 U <- c() # Picked sets.
14 for (fold_row in 1:k) {
15 D <- setdiff(row, U)
16 Si <- sample(D, folds)
17 S[fold_row,] <- Si
18 U <- union(U, Si)
19 }
20
21 return(S)
22 }
23
24 # ------egerror(x, y)------
25 # Locate the generalization
26 # error within in our model
27 # by comparing the results:
28 # x and y targets. Returns:
29 # the difference for x & y.
30 egerror <- function(x, y) {
31 targets <- length(x)
32 # Using good old MSE...
33 sdiff <- sum((x - y)^2)
34 return(sdiff / targets)
35 }
36
37 # ------kfoldcv(X, y, k)-------
38 # Returns the estimated genera-
39 # lization error of the feature
40 # set according to a linear mo-
41 # del. It does this by applying
42 # an k-folding cross validation

5

43 # method, splitting X randomly,
44 # gives k disjoint subets of X.
45 kfoldcv <- function(X, y, k) {
46 kfolding <- 1:k
47 sets <- disjoin(X, k)
48 ege <- c() # Empty set of errors.
49 for (i in kfolding) { # Every set.
50 kset <- sets[-i,] # Remove ’i’
51 iset <- sets[i,] # Only ’i’.
52 # Pick dataset for all but ’i’
53 Xi <- X[kset,] ; yi <- y[kset]
54 # Estimated parameters w. Xi.
55 hypothesis <- linrhat(Xi, yi)
56 # Predict for the unused ’i’.
57 p <- X[iset,]%*%hypothesis
58 # Esimate error of this.
59 e <- egerror(p, y[iset])
60 # Add to list of these.
61 ege <- c(ege, abs(e))
62 }
63
64 # Oh yea baby,
65 # average errors.
66 return(mean(ege))
67 }

Listing 3: Brute-Force Feature Selection to Find Lowest M.S.E. Subset

1 library("ggplot2")
2 source("kfoldcv.r")
3
4 # ------kfold(i, X, y, k)------
5 # Wrapper for applying kfoldcv,
6 # since it needs to apply rows.
7 kfold <- function(i, X, y, k) {
8 Xi <- data.matrix(X[,i]);
9 return(kfoldcv(Xi, y, k))

10 }
11
12 # ------featsel(X, y, k)------
13 # Applies feature selection to
14 # X, giving the best subset of
15 # X which minimizes the error.
16 # This is done by applying the
17 # k-fold cross validation, for
18 # each possible subset of X’s.
19 featsel <- function(X, y, k) {
20 features <- c() # Nothing.
21 lowerror <- Inf # Not good
22 relation <- data.frame(K = 1:k,
23 MSE = c(0))
24 for (i in 1:k) { # Wrapper
25 # Produce all combins.
26 fi <- t(combn(1:k, i))
27 # Apply combinations for
28 # each of the featureset
29 # giving the error value
30 ei <- apply(fi, 1, kfold,
31 X, y, k)
32
33 # Order by error...

6

34 err <- ei[order(ei)]
35 fea <- fi[order(ei),]
36 fea<-data.matrix(fea)
37
38 relation$MSE[i]<-mean(err)
39 # Update best estimates.
40 if (lowerror > err[1]) {
41 lowerror <- err[1];
42 features <- fea[1,]
43 }
44 }
45
46 setEPS()
47 postscript("kvsmse.eps")
48 # Plot relation k v.s. M.S.E.
49 plot(relation$K, relation$MSE,
50 type="both", xlab="k",
51 ylab = "Average M.S.E.")
52 dev.off() # Write...
53 # Best features.
54 return(features)
55 }
56
57 set.seed(12345)
58 X <- data.matrix(swiss[,-1])
59 y <- data.matrix(swiss[,1]);
60 features <- featsel(X, y, 5)
61 X <- data.matrix(X[,features])
62 what <- linrhat(X, y)
63 yhat <- X %*% what
64
65 graph <- data.frame(X)
66 graph$Fertility <- yhat
67
68 setEPS()
69 postscript("education.eps")
70 plot(graph$Education, graph$Fertility,
71 xlab="Education", ylab="Fertility")
72 dev.off()
73
74 postscript("catholic.eps")
75 plot(graph$Catholic, graph$Fertility,
76 xlab="Catholic", ylab="Fertility")
77 dev.off()
78
79 postscript("mortality.eps")
80 plot(graph$Infant.Mortality, graph$Fertility,
81 xlab="Infant Mortality", ylab="Fertility")
82 dev.off()

Listing 4: Script for Assignment 2 on Linear Models, Ridge, Lasso and Cross-Validation

1 library("MASS")
2 library("glmnet")
3 data <- read.csv("tecator.csv");
4 data_matrix <- data.matrix(data)
5
6 setEPS()
7 postscript("linear.eps")
8 plot(data$Protein, data$Moisture,
9 xlab="Protein", ylab="Moisture")

7

10 dev.off()
11
12 # Do you think these data are described well by a linear model?
13 # Answer: yes, definitely. Both data are rising similar ratios.
14 # Moisture ~ N(mu = Xw, sigma^2), a linear model should work...
15 # Moisture_hat ~ Mi = polynomial function dependent on Protein:
16 # w0 + x1*w1 + x2*w2^2 + ... xi*wi^i = f(x)
17
18 set.seed(12345) # Set seed for getting same results...
19 indices <- sample(1:nrow(data), floor(nrow(data)*0.5))
20 training <- data[indices,] # Subset for training data.
21 validation <- data[-indices,] # Subset for validation.
22 validation <- validation[-nrow(validation),] # Shhh...
23
24 polynomials <- 1:6
25 imse <- data.frame(Model = polynomials,
26 Training.MSE = c(0.0),
27 Validation.MSE = c(0))
28 for (degree in polynomials) {
29 model <- lm(Moisture ~ poly(Protein, degree),
30 training)
31 tprediction <- predict(model, training)
32 vprediction <- predict(model, validation)
33 vmse <- (vprediction - validation$Moisture)^2
34 tmse <- (tprediction - training$Moisture)^2
35 vmse <- mean(vmse) # MSE for validation set.
36 tmse <- mean(tmse) # MSE for training set...
37 imse$Validation.MSE[degree] = vmse # For i.
38 imse$Training.MSE[degree] = tmse # For i.
39 }
40
41 setEPS()
42 postscript("depends.eps")
43 plot(imse$Model, imse$Training.MSE,
44 xlab="Model", ylab="M.S.E.", "b", col="purple",
45 ylim=c(31.0, 34.0))
46 points(imse$Model, imse$Validation.MSE, col="orange",
47 type = "b", ylim=c(31.0, 34.0))
48 legend("bottomright", legend=c("Training", "Validation"),
49 col=c("purple", "orange"), lty=1)
50 dev.off()
51
52 # Which model is best according to the plot?
53 # Answer: model where i = 1, since the validation predictions
54 # are becoming more erronous as i gets larger, while training
55 # becomes more accurate (this is caused by overfitting data).
56 # How do the M.S.E. values change and why?
57 # Answer: the error for the training set seems to become less
58 # as i gets larger while validation becomes more error prone.
59 # This is caused because the model overfits, with a bias to-
60 # wards the training set (since the model is based on these).
61 # Ppecifically, it overfits: the models become more complex.
62 # Interpret this picture in terms of bias-variance tradeoffs.
63 # Answer: it seems to be biased towards the training dataset.
64 # Since the E[yhat(x0) - f(x)] isn’t close to zero, biased...
65
66 model <- lm(Fat ~ . - Moisture - Protein, data)
67 feature_selection <- stepAIC(model, direction="both")
68 # How many were selected? Answer: 64, coeffiecients.
69
70 y <- data_matrix[,102] # Select Fat as the only response...
71 X <- data_matrix[,2:101] # Select Channel1-Channel-100 features.

8

72 ridge <- glmnet(X, y, alpha = 0) # Fit with the Ridge regression.
73 lasso <- glmnet(X, y, alpha = 1) # Fit with the Lasso regression.
74
75 setEPS()
76 postscript("ridge.eps")
77 # Explicit about x-axis variable.
78 plot(ridge, xvar="lambda", label=TRUE)
79 dev.off()
80
81 # Report on how the coeffiecients change with lambda.
82 # Answer: ridge penalizes all features equally with lambda.
83 # Therefore, it will take longer to coverge all features...
84
85 setEPS()
86 postscript("lasso.eps")
87 # Explicit about x-axis variable.
88 plot(lasso, xvar="lambda", label=TRUE)
89 dev.off()
90
91 # Conclusions on the Ridge vs Lasso resulting plots?
92 # Answer: the Lasso regression seems to converge individual
93 # features, therefore converging faster, towards the values
94 # of some features. While Ridge converges simultaniously...
95
96 kfoldcv <- cv.glmnet(X, y, type.measure="mse", nfolds=20)
97 feature_selection <- coef(kfoldcv, s = "lambda.min")
98
99 # Report the optimal lambda and how many variables were selected.

100 # Answer: the optimal lambda was 0.02985605 and 14 were selected.
101 # Conclusions: the interval area shown in the graph shows optimal
102 # number of feature selections, basically with the lowest M.S.E.
103
104 setEPS()
105 postscript("kfold.eps")
106 plot(kfoldcv)
107 dev.off()
108
109 # Compare the results from steps (4) and (7). Basically, compare
110 # stepAIC() and the glmnet CV (using k-fold). Answer: stepAIC
111 # gives a lot of features, 64 for the selection, while glmnet cv
112 # for Lasso gives 13 features. Therefore, stepAIC() seems to not
113 # penalize the features very well, and therefore chooses more...

9

Introduction to Machine Learning
Individual Laboration Report –3–

Erik Sven Vasconcelos Jansson
erija578@student.liu.se
Linköping University, Sweden

November 27, 2016

Assignment 1
Now that linear regression and cross-validation
have been studied for regression problems (involv-
ing continuous target variables), the question is
how to apply the same concept to classification
problems (which involve a discrete amount of tar-
get variables). Both Linear Discriminant Analy-
sis (LDA) and Logistic Regression can be used to
achieve this, and also to draw decision boundaries.

In this task the goal is to classify the Sex of Aus-
tralian Crabs by using their Carapace Length and
Rear Width using LDA and thereafter plotting the
decision boundary. Plotting the data gives Figure 1.
As can be seen, a decision boundary seems to exist.

Firstly, the linear parameters w0 and w need to
be found for each class k, essentially creating our
target hypothesis function for each one of these k.
Finding these parameters is done with Equations 1,
essentially computing the mean µ̂k for each class k
which is used to derive the covariance matrices Σk.

π̂k =
Nk

N

µ̂k =
1

Nk

∑

i∈k
xi

Σk =
1

Nk

∑

i∈k
(µ̂k − xi)(µ̂k − xi)

ᵀ

Σ̂ =
1

N

∑

k∈K
NkΣk =

∑

k∈K

covXk

|Xk|

(1)

wk = − µ̂
ᵀ
k

2
Σ̂−1µ̂k + log π̂k

wk = Σ̂−1µ̂k

(2)

Finally, computing Σ̂ is done by using these Σk,
which is thereafter used to calculate w0 and w, ∀k.
Implementation of these formulae in R can be found
in Listing 1 under lines 15-39 in the lda function.
All equations are in Friedman et al’s [FHT09] book.

δk(x) = w0 +w (3)

Using the Discriminant Function in Equation 3
above, one can plot the line through each class k.
The decision boundary is in-between these 2 lines.
In lines 58-61 we calculate the intercept and the
slope of the decision boundary, which gives us all
the information needed to produce a new Figure 2.
The fit seems perfect, exactly as previous Figure 1.

Figure 1: Sex Classifications of Australian Crabs

10

15

20

20 30 40

Carapace Length

R
e

a
r

W
id

th sex

Female

Male

1

Thereafter, by using Logistic Regression instead,
Figure 3 can be obtained, which misses predictions.

Class w0 w

Female -22.42 (-2.161, 8.248)
Male -12.42 (-0.213, 2.565)

Table 1: Predicted Parameters for Australian Crab

Figure 2: Crab Sex Decision Boundary using LDA

10

15

20

20 30 40

Carapace Length

R
e
a
r

W
id

th sex

Female

Male

Figure 3: Crab Sex Decision Boundary using LR

10

15

20

20 30 40

Carapace Length

R
e
a
r

W
id

th yhat

Female

Male

Assignment 2

Given several observations from different customers
with certain features and classifications of whether
they have managed their loans good or bad, we are
tasked to predict if a new customer with certain set
of features, will pay back their loans on time or not.

By using decision tree learning, which maps ob-
servations (the branches) to their conclusions (the
leaves), we can predict this aforementioned model.
In Listing 2 under the lines 26-45, we use tree to
fit our model for usage on training & testing sets.
These models can be fit using different measures of
impurity, where we only consider deviance and the
gini index here. In Table 2 are the results for these.
It seems that gini and/or deviance classifies better.

Data Set Impurity Measure Miss Rate

Training Deviance 0.212
Testing Deviance 0.236
Training Gini 0.230
Testing Gini 0.282
Training Deviance & Gini 0.212
Testing Deviance & Gini 0.236

Table 2: Decision Tree Missclassification Rates

Figure 4: Training and Validation Deviance Values

300

400

500

4 8 12

Leaves

D
e

v
ia

n
c
e data set

Training

Validation

2

Afterwards, we use the training and validation
data sets to choose the optimal tree depth. Follow-
ing lines 47-66, we iteratively prune the decision
tree, essentially adding more leaves, and thereafter
plot the dependence on the number of leaves and
the estimated deviance of the model. This plot can
be seen in Figure 4. As can be seen, when more
than 12 leaves are selected, the validation set has
a pretty large increase in deviance, which isn’t the
desired behaviour. On the other hand, the train-
ing data set has a constant decrease in deviance as
the number of leaves increase. Therefore, the best
number of leaves seems to be 12, giving best of both
worlds. Additionally, the depth of this optimal tree
is 6 and has a misclassification rate of 0.24 with the
following features selected: savings, duration, his-
tory, age, purpose, amount, other and resident, all
of which can be found easy with summary(tree).

Finally, the decision tree is plotted in Figure 5.
Most of the branches and their outcomes seem quite
reasonable (with common sense), a person that has
very few savings and has a history of usually de-
lays loans, will probably be a bad customer who
doesn’t pay back them. While a person which has
savings and is a resident will probably be more re-
sponsible and pay back his loans. It seems that
the tree has been able to select the most important
features as the branches of the decision tree, which
are highly correlated with either classification re-
sult (the leaves). The depth can be seen here too.

Figure 5: Visualization of the Decision Tree

|
savings < 2.5

duration < 43.5

history < 1.5

age < 31.5

purpose < 0.5

age < 25.5

amount < 1285

duration < 11amount < 7950

other < 1.5

resident < 3.5

bad

bad good

good

good bad
good bad

bad
bad good

good

Now we proceed to fit another model with the
same situation, but using Naïve Bayes instead,
which basically assumes that all features are inde-
pendent, like so: p(Ck|x1, x2, ..., xn) ∝ p(xi|Ck).

Under lines 82-90 we fit the model with
e1071’s naiveBayes classification, and produce
the confusion matrices and missclassifications be-
low for both the training and the testing data sets.
Missclassification: train = 0.300 & test = 0.306.

train bad good
bad 95 98

good 52 255

test bad good
bad 142 147

good 83 378

Table 3: Normal Naïve Bayes Confusion Matrix

It seems that in this case, Naïve Bayes performs
worse than decision trees since the missclassifica-
tion rate is quite a bit higher. Now, let’s assume
that we are given a loss matrix, a way of penalizing
the predictor to apply weight to certain negatives,
which in this case is L = (0 1

10 0). Doing this in lines
92-109 results in a prediction giving the confu-
sion matrix below and missclassifications of train
= 0.274 and test = 0.278. These missclassifications
are a lot lower than those in the normal “lossless”
model. The reason why this happens is because the
cost of doing a faulty classification is highly penal-
ized in one case (while the other isn’t penalized as
much), this is a underlying reason for these results.

train bad good
bad 27 17

good 120 336

test bad good
bad 40 24

good 185 501

Table 4: “Lossy” Naïve Bayes Confusion Matrix

References
[FHT09] Jerome Friedman, Trevor Hastie, and

Robert Tibshirani. The Elements of Sta-
tistical Learning. Springer series in statis-
tics, Berlin, second (11th) edition, 2009.

3

Appendix

Listing 1: Linear Discriminant Analysis Assignment

1 library("glmnet")
2 library("ggplot2")
3 library("grDevices")
4
5 mu <- function(X) { return(colMeans(X)) }
6 softmax <- function(X, wi, wj) {
7 X <- data.matrix(X)
8 ihypothesis <- exp(X %*% wi[-1] + wi[1])
9 jhypothesis <- exp(X %*% wj[-1] + wj[1])

10 jhypothesis <- jhypothesis +
11 exp(X %*% wi[-1] + wi[1])
12 return(ihypothesis / jhypothesis)
13 }
14
15 lda <- function(X, y) {
16 classes <- levels(y) # Only c = 2
17 class1 <- which(y == classes[1])
18 class2 <- which(y == classes[2])
19 X1 <- data.matrix(X[class1,])
20 y1 <- data.matrix(y[class1]);
21 X2 <- data.matrix(X[class2,])
22 y2 <- data.matrix(y[class2]);
23
24 mu1 <- mu(X1) ; mu2 <- mu(X2)
25 pi1 <- length(y1) / length(y)
26 pi2 <- length(y2) / length(y)
27 sigma <- cov(X1)*nrow(X1)+
28 cov(X2)*nrow(X2)
29 sigma <- sigma/nrow(X)
30
31 w01 <- -0.5 * mu1 %*% solve(sigma) %*% mu1 + log(pi1)
32 wx1 <- solve(sigma) %*% mu1 # Some sort of weird magic.
33 w1 <- matrix(c(w01, wx1), 1, 3)
34
35 w02 <- -0.5 * mu2 %*% solve(sigma) %*% mu2 + log(pi2)
36 wx2 <- solve(sigma) %*% mu2 # Some more magic here too.
37 w2 <- matrix(c(w02, wx2), 1, 3)
38 return(rbind(w1, w2)) # w1, w2.
39 }
40
41 classify <- function(X, d) {
42 return(d[1] + d[2]*X[,1] +
43 d[3]*X[,2])
44 }
45
46 crabs <- read.csv("crabs.csv")
47 X <- crabs[,c("CL", "RW")]
48 y <- crabs[,c("sex")]
49
50 setEPS()
51 cairo_ps("crabs.eps")
52 print(qplot(CL, RW, data = crabs, color = sex,
53 geom = c("point"),
54 xlab = "Carapace Length",
55 ylab = "Rear Width"))
56 dev.off()
57

4

58 parameters <- lda(X, y)
59 difference <- parameters[1,]-parameters[2,]
60 intercept <- difference[1] / difference[3]
61 slope <- difference[2] / difference[3]
62
63 sex <- classify(X, difference) > 0.0
64 sex[sex == FALSE] = "Female"
65 sex[sex == TRUE] = "Male"
66
67 setEPS()
68 cairo_ps("boundarylda.eps")
69 print(qplot(CL, RW, data = crabs, color = sex,
70 geom = c("point"),
71 xlab = "Carapace Length",
72 ylab = "Rear Width") +
73 geom_abline(intercept = -intercept,
74 slope = -slope, colour=’purple’))
75 dev.off()
76
77 fit <- cv.glmnet(data.matrix(X), data.matrix(y),
78 family = "binomial", type.measure = "class")
79 yhat <- predict(fit, data.matrix(X), type="class")
80
81 setEPS()
82 cairo_ps("boundarylr.eps")
83 print(qplot(XCL, XRW, color = yhat,
84 geom = c("point"),
85 xlab = "Carapace Length",
86 ylab = "Rear Width") +
87 geom_abline(intercept = -coef(fit)[1] / coef(fit)[3],
88 slope = -coef(fit)[2] / coef(fit)[3],
89 colour=’purple’))
90 dev.off()
91
92 cat("Decision boundary with linear discriminant analysis:",
93 -intercept, "+", -slope, "* k\n")
94 cat("Decision boundary with linear regression:",
95 -coef(fit)[1] / coef(fit)[3], "+",
96 -coef(fit)[2] / coef(fit)[3], "* k\n")

Listing 2: Decision Trees and Naïve Bayes Assignment

1 library("tree")
2 library("ggplot2")
3 library("reshape2")
4 library("grDevices")
5 library("e1071")
6
7 set.seed(12345) # As always.....
8 scores <- read.csv("scores.csv")
9 n <- nrow(scores) # Observation.

10 samples <- sample(1:n, n / 2.0)
11 others <- setdiff(1:n, samples)
12 halves <- sample(others, n/4.0)
13
14 training <- scores[samples,]
15 trainingX <- training[,-ncol(training)]
16 trainingy <- training[,ncol(training)]
17
18 validation <- scores[halves,]
19 validationX <- validation[,-ncol(validation)]

5

20 validationy <- validation[,ncol(validation)]
21
22 testing <- scores[-halves,]
23 testingX <- testing[,-ncol(testing)]
24 testingy <- testing[,ncol(testing)]
25
26 fit <- tree(good_bad ~ ., data = training, split = c("deviance"))
27 training_prediction <- predict(fit, trainingX, type= "class")
28 testing_prediction <- predict(fit, testingX, type="class")
29 cat("Missclassifications only with deviance impurity: (",
30 mean(training_prediction != trainingy), "," ,
31 mean(testing_prediction != testingy), ")\n")
32
33 fit <- tree(good_bad ~ ., data = training, split = c("gini"))
34 training_prediction <- predict(fit, trainingX, type= "class")
35 testing_prediction <- predict(fit, testingX, type="class")
36 cat("Missclassifications only with the gini impurity: (",
37 mean(training_prediction != trainingy), "," ,
38 mean(testing_prediction != testingy), ")\n")
39
40 fit <- tree(good_bad ~ ., data = training, split = c("deviance", "gini"))
41 training_prediction <- predict(fit, trainingX, type= "class")
42 testing_prediction <- predict(fit, testingX, type="class")
43 cat("Missclassifications only with deviance and gini: (",
44 mean(training_prediction != trainingy), "," ,
45 mean(testing_prediction != testingy), ")\n")
46
47 max_depth <- 15
48 training_deviance <- rep(0, max_depth)
49 validation_deviance <- rep(0, max_depth)
50 for (depth_level in 2:max_depth) {
51 pruned <- prune.tree(fit, best = depth_level)
52 pred <- predict(pruned, validation, type="tree")
53 training_deviance[depth_level] <- deviance(pruned)
54 validation_deviance[depth_level] <- deviance(pred)
55 }
56
57 deviances <- data.frame(2:max_depth, training_deviance[-1], validation_deviance[-1])
58 colnames(deviances) <- c("Leaves", "Training", "Validation")
59 collapsed_deviances <- melt(deviances, id="Leaves")
60
61 setEPS()
62 cairo_ps("deviance.eps")
63 # It seems depth 12 is good, since validation goes hayware after that...
64 print(ggplot(data=collapsed_deviances, aes(x=Leaves, y=value, color=variable)) +
65 geom_smooth() + labs(x="Leaves", y="Deviance", color="data set"))
66 dev.off()
67
68 # The final tree has depth 6, see output of ‘final_tree‘.
69 # The parameters chosen are: savings, duration, history, age,
70 # purpose, amount, other, resident, in ‘summary(final_tree)‘.
71 final_tree <- prune.tree(fit, best = 12) # The best choice...
72 prediction <- predict(final_tree, testing, type = "class")
73 cat("Missclassification for the optimal tree depth: (",
74 mean(prediction != testingy), ")\n")
75
76 fit <- naiveBayes(good_bad ~ ., data = training)
77 training_prediction <- predict(fit, training, type = "class")
78 testing_prediction <- predict(fit, testing, type = "class")
79 cat("Missclassifications using Naive Bayes method: (",
80 mean(training_prediction != trainingy), "," ,
81 mean(testing_prediction != testingy), ")\n")

6

82 cat("\nConfusion matrices for using Naive Bayes:\n")
83 print(table(training_prediction, trainingy))
84 print(table(testing_prediction, testingy))

7

Introduction to Machine Learning
Individual Laboration Report –4–

Erik Sven Vasconcelos Jansson
erija578@student.liu.se
Linköping University, Sweden

December 4, 2016

Assignment 1

We are given the data set State, where observations
regarding themetropolitan ratio and the local public
expenditure for several states exist. Plotting these
against each other gives Figure 1. Notice that the
data is quite spread out, and that there doesn’t
seem to be any easily visible pattern unfortunately.

Figure 1: Metropolitan Ratio vs Expenditures ($)

200

300

400

0 25 50 75

Metropolitan Population Ratio

C
a

p
it
a

/P
u

b
lic

 E
x
p

e
n

d
it
u

re
s
 (

$
)

colour

observed

For this task we are recommended to use regres-
sion trees as the predictor for the above situation.
We fit the model using all observations, and there-
after cross-validate the model to find the optimal
number of leaves for the decision tree. See Figure 2.

Figure 2: Optimal Regression Tree Predictor

|
MET < 7.7

MET < 60.5

346.4

260.9 305.8

Notice that three leaves have been selected,
therefore, the optimal regression tree is found by
pruning the original tree and obtaining the above.
This is done in Listing 1 under source lines 20-30.

Thereafter, we predict the observed data using
our optimal regression tree. Plotting these against
the original observations gives Figure 3. Notice how
the predictor has given estimates that are roughly
themean of each “bucket” selected by the regression
tree. Therefore, the selected model is not expected
to perform very good since it does not account for
the noise present in the model very well, but will
predict some correctly, since it’s around the mean.

1

Figure 3: Regression Tree Predicted Expenditure

200

300

400

0 25 50 75

Metropolitan Population Ratio

C
a

p
it
a

/P
u

b
lic

 E
x
p

e
n

d
it
u

re
s
 (

$
)

colour

observed

predicted

Finally, we plot the residuals from the regression
tree model, which are basically the distance between
the observed responses and the predicted responses.
See Figure 4, where we have plotted a histogram of
the residuals. Notice that it doesn’t resemble a bell
curve, meaning the error isn’t normally distributed.

Figure 4: Histogram of Prediction Residuals

Histogram of residuals(best_tree)

residuals(best_tree)

F
re
q
u
e
n
c
y

-50 0 50 100

0
2

4
6

8

Since the chosen model doesn’t seem particularly
good, at least for these observations, we want to
find more information about our estimator. Using
bootstrap seems like a good idea. Bootstrapping is
used to estimate the properties of an estimator by
re-sampling from a given approximated distribution.

Because we don’t know the underlying distribu-
tion, we want to use non-parametric bootstrapping.
It works by re-sampling observations with replace-
ment, the distribution is then calculated by using:
f̂(D1), f̂(D2), ..., f̂(DB), where f̂ is our estimator.
We use the boot function in R, re-sampling 1024
times. See Listing 1 lines 49-64 for the algorithm.

Figure 5: Non-Parametric Bootstrap C.B.

200

300

400

0 25 50 75

Metropolitan Population Ratio

C
a

p
it
a

/P
u

b
lic

 E
x
p

e
n

d
it
u

re
s
 (

$
)

colour

c.b

observed

predicted

According to Figure 5 which displays the plot of
the confidence bands of our estimator, several of our
observations fall outside the 95% confidence level,
which means that our estimator isn’t good at all.
The curve also seems to be quite bumpy, because
the predictor only jumps between the three leaves.

Now, we are given a precondition: Y ∼ N (µi, σ
2)

which means the target is now normally distributed.
In light of this, we can use parametric bootstrapping,
since the distribution has now been assumed to be
known. It functions by re-sampling from the given
distribution, which is different from before since we
were only taking samples from the original data set,
while we now generate entirely new, fresh, samples.

2

By doing this in Listing 1 under lines 82-114 we
retrieve both the confidence and prediction bands.
Both of these bands are plotted in Figure 6 below.

Figure 6: Parametric Bootstrap C.B. + P.B.

200

300

400

0 25 50 75

Metropolitan Population Ratio

C
a

p
it
a

/P
u

b
lic

 E
x
p

e
n

d
it
u

re
s
 (

$
)

colour

c.b

observed

p.b

predicted

Notice, that the prediction band covers most of
the observations, as opposed to the confidence band.
Prediction bands account for the noise in the data.
It seems reasonable that around 5% of the observa-
tions fall outside the prediction band, since we are
targeting a 95% level of confidence (or by α = 5%).
In this case, the model which we have predicted
seems reasonable, since most predictions are right.
However, this is probably not true, since Figure 4
shows a distribution that is most likely not normal,
therefore non-parametric bootstrapping seems more
accurate in this particular case (also by intuition).

Assignment 2
Here, we are given a data set containing measures of
near-infrared spectra and their viscosity level for a
collection of diesel fuels. There are a lot of features.
Principal Component Analysis (PCA henceforth)

is a dimensionality reduction technique, where the
goal is to find a set of principal components where
the given observations are might to be correlated.
Our task is to find the principal components of the
given data set accounting for 99% of the variance.

By using the built-in prcomp function, we apply
PCA in Listing 2 under lines 7-17. Afterwards in
Figure 7 we produce a scree plot, which tells us that
two features seem to account for all of the variance.
More accurately, a bit above 99% of the variance...

Figure 7: Scree Plot for PCA
principal_comp

V
a
ri
a
n
c
e
s

0
.0
0
0

0
.0
0
2

0
.0
0
4

0
.0
0
6

0
.0
0
8

0
.0
1
0

0
.0
1
2

0
.0
1
4

Additionally, the chosen features X750 and X752
are plotted against each other, giving the Figure 8.
Notice that there are a couple of outliers in [1.0, 1.5]
which can be classified as being unusual diesel fuels.

Figure 8: Score for PC1 and PC2

-0.10

-0.05

0.00

0.05

0.0 0.5 1.0 1.5

X750

X
7
5
2 colour

score

3

Plotting the so called loadings of these principal
components gives Figure 9. A high loading implies
that there is a strong correlation for a given feature.

Figure 9: Trace Plot of PCA Loadings

0.08

0.09

0.10

0.11

0 50 100

i

X
7

5
0

 L
o

a
d

in
g

s

colour

loading

0.0

0.1

0.2

0.3

0 50 100

i

X
7

5
2

 L
o

a
d

in
g

s

colour

loading

Notice that both PC1 and PC2 seem to have a
correlated feature(s) that spike in loading amount,
while the rest seem to less significant in comparison.
This might be a good candidate for a third principal
component if we required to have higher variance.

Now we apply Independent Component Analysis
instead, which assumes the given components are
statistically independent. We do this in Listing 2
under lines 45-68, and produce the trace plot for
these in Figure 10. The contents of these plots are
similar to those in Figure 9, which are loadings, but
are inverted, since we are measuring independence
instead of correlation, the opposite PCA measure.
Finally, we plot the score(s) of these in Figure 11.

Figure 10: Trace Plot of ICA Loadings

-0.8

-0.6

-0.4

0 50 100

i

X
7

5
0

 I
n

v
e

rs
e

 L
o

a
d

in
g

s

colour

loading?

-12

-8

-4

0

0 50 100

i

X
7

5
2

 I
n

v
e

rs
e

 L
o

a
d

in
g

s

colour

loading?

4

Notice that the direction of the score has been
swapped, the underlying reason for this is similar
to those previously mentioned regarding loadings.
It’s interesting to note that the units are different.

Figure 11: Score for PCA and ICA

-2

0

2

-12 -8 -4 0

X750

X
7
5
2

colour

ica

pca

Finally, we apply cross-validation in Figure 11,
and note that the ranges of [10, 18] p.c. components
produces least MSE, in relation to the p.c. amount.

Figure 12: Cross-Validation for PCA

0 20 40 60 80 100 120

0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

Viscosity

number of components

M
S

E
P

References
[FHT09] Jerome Friedman, Trevor Hastie, and

Robert Tibshirani. The Elements of Sta-
tistical Learning. Springer series in statis-
tics, Berlin, second (11th) edition, 2009.

5

Appendix

Listing 1: Script for Assignment 1 on Bootstrapping Regression Tree Model

1 library("tree")
2 library("boot")
3 library("ggplot2")
4 library("grDevices")
5
6 setEPS() # Enable save to eps.
7 state <- read.csv2("state.csv")
8 # Reorder data according to $MET.
9 state <- state[order(state$MET),]

10
11 cairo_ps("state.eps")
12 # Plotting MET vs EX. See file.
13 print(qplot(MET, EX, data = state,
14 xlab = "Metropolitan Population Ratio",
15 ylab = "Capita/Public Expenditures ($)",
16 geom = c("point")))
17 dev.off()
18
19 set.seed(12345) # Required for cross-validation.
20 # Make sure that there are at least 8 leaves now.
21 control <- tree.control(nrow(state), minsize = 8)
22 # Fit our model by using regression trees (8 leaves).
23 fit <- tree(EX ~ MET, data = state, control = control)
24 optimal <- cv.tree(fit) # Do k-fold cross-validation.
25 least_deviance_index <- which.min(optimal$dev)
26 leaves <- optimal$size[least_deviance_index]
27 best_tree <- prune.tree(fit, best = leaves)
28 # Gives "best" tree according to k-fold cv.
29 yhat <- predict(best_tree, newdata = state)
30 # Predict EX by using best regression tree.
31
32 cairo_ps("tree.eps")
33 plot(best_tree)
34 text(best_tree)
35 dev.off()
36
37 cairo_ps("predicted_state.eps")
38 # Plotting MET vs EX. See the file.
39 print(qplot(MET, yhat, data = state,
40 xlab = "Metropolitan Population Ratio",
41 ylab = "Capita/Public Expenditures ($)",
42 geom = c("point")))
43 dev.off()
44
45 cairo_ps("histogram.eps")
46 hist(residuals(best_tree))
47 dev.off()
48
49 bootstrap_predictor <- function(data, indices) {
50 sample <- data[indices,] # Pick a subset of data.
51 control <- tree.control(nrow(sample), minsize = 8)
52 # Fit our model by using regression trees (8 leaves).
53 fit <- tree(EX ~ MET, data = sample, control = control)
54 leaves <- optimal$size[least_deviance_index]
55 best_tree <- prune.tree(fit, best = leaves)
56 # Gives "best" tree according to k-fold cv.
57 yhat <- predict(best_tree, newdata = data)

6

58 return(yhat) # Prediction from subset.
59 }
60
61 set.seed(12345) # Required for the bootstrapping.
62 # Apply non-parametric bootstrap to our regression tree
63 # model, picking out 1024 different indices from state.
64 bootstrap <- boot(state, bootstrap_predictor, R = 1024)
65
66 cairo_ps("bootstrap.eps")
67 plot(bootstrap)
68 dev.off()
69
70 # Find the confidence bands.
71 bands <- envelope(bootstrap)
72
73 cairo_ps("bands.eps")
74 # Plotting MET vs EX. See the file.
75 print(qplot(MET, yhat, data = state,
76 xlab = "Metropolitan Population Ratio",
77 ylab = "Capita/Public Expenditures ($)",
78 geom = c("point")) + geom_line(data = state, aes(x = MET, y = bands$point[1,], col = "c.b"

)) +
79 geom_line(data = state, aes(x = MET, y = bands$point[2,], col = "c.b"

)))
80 dev.off()
81
82 bootstrap_prediction <- function(data) {
83 control <- tree.control(nrow(data), minsize = 8)
84 # Fit our model by using regression trees (8 leaves).
85 fit <- tree(EX ~ MET, data = data, control = control)
86 leaves <- optimal$size[least_deviance_index]
87 best_tree <- prune.tree(fit, best = leaves)
88 # Gives "best" tree according to k-fold cv.
89 yhat <- predict(best_tree, newdata = data)
90 sample <- rnorm(nrow(data), yhat, sd(resid(fit)))
91 return(yhat) # Prediction from random subset.
92 }
93
94 bootstrap_confidence <- function(data) {
95 control <- tree.control(nrow(data), minsize = 8)
96 # Fit our model by using regression trees (8 leaves).
97 fit <- tree(EX ~ MET, data = data, control = control)
98 leaves <- optimal$size[least_deviance_index]
99 best_tree <- prune.tree(fit, best = leaves)

100 # Gives "best" tree according to k-fold cv.
101 yhat <- predict(best_tree, newdata = data)
102 return(yhat) # Prediction from subset.
103 }
104
105 bootstrap_random <- function(data, mle) {
106 data$EX <- rnorm(nrow(data), predict(mle, newdata = data), sd(resid(mle)))
107 return(data) # MLE is basically the best tree model from the prediction.
108 }
109
110 set.seed(12345) # Required for the paramatric bootstrapping using confidence bands instead.
111 bootstrapc <- boot(state, bootstrap_confidence, R = 1024, mle = best_tree, ran.gen =

bootstrap_random, sim = "parametric")
112 set.seed(12345) # Required for the paramatric bootstrapping using prediction bands instead.
113 bootstrapp <- boot(state, bootstrap_prediction, R = 1024, mle = best_tree, ran.gen =

bootstrap_random, sim = "parametric")
114 confidence_bands <- envelope(bootstrapc) ; prediction_bands <- envelope(bootstrapp) # Bands

for the Parametric Boostrap...

7

115
116 cairo_ps("npcbootstrap.eps")
117 plot(bootstrapc)
118 dev.off()
119 cairo_ps("nppbootstrap.eps")
120 plot(bootstrapp)
121 dev.off()
122
123 cairo_ps("npbands.eps")
124 # Plotting MET vs EX. See the file.
125 print(qplot(MET, yhat, data = state,
126 xlab = "Metropolitan Population Ratio",
127 ylab = "Capita/Public Expenditures ($)",
128 color = "predicted",
129 geom = c("point")) + geom_line(data = state, aes(x = MET, y = prediction_bands$point[1,],

col = "p.b")) +
130 geom_line(data = state, aes(x = MET, y = prediction_bands$point[2,],

col = "p.b")) +
131 geom_line(data = state, aes(x = MET, y = confidence_bands$point[1,],

col = "c.b")) +
132 geom_line(data = state, aes(x = MET, y = confidence_bands$point[2,],

col = "c.b")) +
133 geom_point(data = state, aes(x = MET, y = EX, color="real")))
134 dev.off()

Listing 2: Script for Assignment 2 on Principal/Individual Component Analysis

1 library("pls")
2 library("ggplot2")
3 library("fastICA")
4 library("reshape2")
5
6 setEPS() # Enables saving EPS format.
7 spectra <- read.csv2("NIRSpectra.csv")
8 xspectra <- spectra[,-ncol(spectra)]
9 yspectra <- spectra[,ncol(spectra)]

10 principal_comp <- prcomp(xspectra)
11 lambda <- principal_comp$sdev^2
12
13 # Notice both X750, X752.
14 cairo_ps("screeplot.eps")
15 screeplot(principal_comp,
16 ncol(xspectra))
17 dev.off()
18 cairo_ps("biplot.eps")
19 biplot(principal_comp)
20 dev.off()
21
22 cairo_ps("score.eps")
23 print(qplot(principal_comp$x[,1],
24 principal_comp$x[,2],
25 xlab = "X750",
26 ylab = "X752"))
27 dev.off()
28
29 x750loadings <- principal_comp$rotation[,1]
30 x752loadings <- principal_comp$rotation[,2]
31
32 cairo_ps("x750loadings.eps")
33 print(qplot(1:length(x750loadings),
34 x750loadings, xlab="i",

8

35 ylab="X750 Loadings"))
36 dev.off()
37
38 cairo_ps("x752loadings.eps")
39 print(qplot(1:length(x752loadings),
40 x752loadings, xlab="i",
41 ylab="X752 Loadings"))
42 dev.off()
43
44 set.seed(12345) # But WHY?!?!?!??!?!?!?!
45 independent_comp <- fastICA(xspectra, 2)
46
47 W <- independent_comp$K %*% independent_comp$W
48 x750whitening <- W[,1] # Un-mixed and whitened
49 x752whitening <- W[,2] # Un-mixed and whitened
50
51 cairo_ps("x750traceplot.eps")
52 print(qplot(1:length(x750whitening),
53 x750whitening, xlab="i",
54 ylab="X750 Inverse Loadings"))
55 dev.off()
56
57 cairo_ps("x752traceplot.eps")
58 print(qplot(1:length(x752whitening),
59 x752whitening, xlab="i",
60 ylab="X752 Inverse Loadings"))
61 dev.off()
62
63 cairo_ps("icascore.eps")
64 print(qplot(independent_comp$S[,1],
65 independent_comp$S[,2],
66 xlab = "X750",
67 ylab = "X752"))
68 dev.off()
69
70 set.seed(12345)
71 principal_compcv <- pcr(Viscosity ~ ., data = spectra,
72 validation = "CV")
73 cairo_ps("pcacv.eps")
74 validationplot(principal_compcv,
75 val.type = "MS")
76 dev.off()

9

Introduction to Machine Learning
Individual Laboration Report –5–

Erik Sven Vasconcelos Jansson
erija578@student.liu.se
Linköping University, Sweden

December 12, 2016

Increasing the accuracy of weather forecasts is
an important task. We propose an estimator which
produces the air temperature forecast in Sweden,
given a latitude/longitude coordinate and also date.
Some observations by SMHI, taken from weather
stations, have been given for training our estimator.

By using a Nadaraya–Watson regression kernel,
we can estimate the temperatures y′. This is done
by taking the kernels kσ(x(i),x′) for each ith data
from the training set and using it as a weight when
considering the response variable y(i). Essentially,
the kernel kσ(x(i),x′) will reduce y(i)’s significance
in the total contribution by giving less weight when
the x(i) and x′ are further away (in some measure).

We have used a Gaussian Radial Basis Function
as our kernel, which is defined in Equation 1 below.
Note the parameter σ, which can be considered as
the spread or width of the kernel, and also x(i)−x′

which is the distance function; giving our kernel the
property of a similarity function (because of e(···)).

By using kσ(x
(i),x′) in Nadaraya–Watson’s y′

estimator, shown in Equation 2, we are essentially
weighing how important the contributions from y(i)

are to y′, because similar x(i) will give higher kσ.

kσ(x,x
′) = exp

(−‖(x− x′)‖2
2σ2 {σ ≈ h}

)
(1)

y′(x,x′) =
∑
n y

(i)kσ(x
(i),x′)∑

n kσ(x
(i),x′)

(2)

Practically, the kernel is calculated in List-
ing 1 under gaussian_kernel and the estima-
tion is being done in the function forecast.
However, note that the final contributions use
forecast_kernel, which will be described now.

Below follows the applied distance functions,
which give the measured distance between a pair of
locations, times of the day, and also dates of year.
These are used in forecast_kernel for each
respective gaussian_kernel invocation. Addi-
tionally, these distances are normalized to range
in-between 0.0 - 1.0. See Listing 1 for these values.

dl = r hav−1(h), hav(ϕ) =
1− cosϕ

2

dt =

{
|x− y| |x− y| < (x+ y) mod 24

(x+ y) mod 24 |x− y| ≥ (x+ y) mod 24

dd =

{
|x− y| |x− y| < (x+ y) mod 365

(x+ y) mod 24 |x− y| ≥ (x+ y) mod 365

Therefore, the final forecast_kernel is being
calculated as seen below, where kl uses the location
distance, kd the date distance and kt time distance.

kf (x,x
′) = kl(x,x

′) + kd(x,x
′) + kt(x,x

′)

Within Table 1 are our chosen σ/h spread/width.

Feature Spread

Location 0.192
Day 0.256
Time 0.256

Table 1: Kernel Width

These have been chosen to decrease contribution,
so for example locations are not easily influenced...

1

Finally, we estimate y for 2013-10-04 during the
entire day in 58.4274 latitude and 14.826 longitude.
See Table 2 and Figure 1 for the predicted results.

Time Temperature (◦C)

04:00 4.478177
06:00 4.614255
08:00 4.846348
10:00 5.097822
12:00 5.256865
14:00 5.264849
16:00 5.149687
18:00 4.978578
20:00 4.799737
22:00 4.637349
24:00 4.512750

Table 2: Forecast for 2013-11-04

Figure 1: Air Temperature Forecast Graphs

5 10 15 20

4
.6

4
.8

5
.0

5
.2

Time of Day (Hours)

A
ir
 T

e
m

p
e
ra

tu
re

 (
C

e
ls

iu
s
)

Notice how the plot above produces a bell curve,
which is to be expected from a temperature forecast
according to previous data given by SMHI. Also,
these values don’t seem to be that far off the truth,
however they seem to be slightly colder than usual.
One possible cause for this can be motivated by the
independence of each kernel, outweighing the other.

For example, assume both location and time of
day are highly correlated to our x′, therefore, they
will contribute highly with their y(i). Now, for the
sake of argument, assume day of the year is not
highly correlated with x′, therefore, the contribu-
tion y(i) will not be significant, at least not com-
pared to location and time of day. Therefore, even
if we are taking an observation which is far away
from the requested date, the contribution will still
be high, which leads to most predictions being in-
fluenced with the “mean” temperatures in Sweden.
Therefore, our hypothesis why most predictions are
colder than expected is because the three kernels
are being accounted independently of each other...

Additionally, some words need to be said regard-
ing our choice for the kernel spread/width values
in Table 1. These were chosen on the assumption
that locations further away than 350 kilometers are
not very good contributors, as are dates with a dis-
tance further away than 45 days and between ≈5
hours. The σ where chosen such that these values
were reached, and only correlated less than 10%,
thereafter proceeding with normal Gaussian falloff.

References
[FHT09] Jerome Friedman, Trevor Hastie, and

Robert Tibshirani. The Elements of Sta-
tistical Learning. Springer series in statis-
tics, Berlin, second (11th) edition, 2009.

2

Appendix

Listing 1: Nadaraya–Watson Gaussian Radial Basis Function Kernel Forecast Estimator

1 library("ggplot2")
2 library("reshape2")
3 library("grDevices")
4 library("geosphere")
5
6 # Fulhax for finding day diff.
7 epoch <- as.Date("1970-01-01")
8 epocht <- as.POSIXlt(paste(epoch,
9 "00:00:00"))

10 stations <- read.csv("stations.csv")
11 temps50k <- read.csv("temps50k.csv")
12 weather <- merge(stations, temps50k,
13 by = "station_number")
14
15 # Language R has a very shitty library for doing dates/times.
16 weather$time <- as.POSIXlt(paste("1970-01-01", weather$time))
17 weather$hour <- round(difftime(weather$time, epocht,
18 units="hours"))
19 weather$day <- sub("^\\d{4}", "1970", weather$date)
20 weather$day <- as.Date(weather$day) - epoch
21 weather$day <- as.numeric(weather$day)
22
23 # Find faulty convert (because of leap year).
24 working <- which(complete.cases(weather$day))
25 weather <- weather[working,] # Remove errors.
26 indx <- sample(1:nrow(weather),nrow(weather))
27
28 gaussian_kernel <- function(distance, sdspread) {
29 # The Gaussian Radial Basis Function.
30 gamma_spread <- 1 / (2*sdspread^2)
31 return(exp(-gamma_spread*distance^2))
32 }
33
34 date_time_modulo_distance <- function(x, y, n) {
35 numeric_distance <- abs(x - y)
36 modulo_distance <- n - numeric_distance
37 if (numeric_distance < modulo_distance)
38 return(numeric_distance)
39 else return(modulo_distance)
40 }
41
42 forecast_kernel <- function(longitudes, latitudes,
43 days, time_points) {
44 time_points <- as.numeric(time_points) # I dunno why. FUCKING R.
45 location_distance <- distHaversine(c(longitudes[1], latitudes[1]),
46 c(longitudes[2], latitudes[2]))
47 location_distance <- (location_distance / 1000) # Kilometers.
48 day_distance <- date_time_modulo_distance(days[1], days[2], 365)
49 day_kernel <- gaussian_kernel(as.numeric(day_distance / 182.5), 0.256)
50 time_point_distance <- date_time_modulo_distance(time_points[1], time_points[2], 24)
51 time_point_kernel <- gaussian_kernel(as.numeric(time_point_distance / 12), 0.256)
52 location_kernel <- gaussian_kernel(as.numeric(location_distance / 1572), 0.192)
53 # cat("(", location_distance, day_distance, time_point_distance, ")",
54 # "=> (", location_kernel, day_kernel, time_point_kernel, ") \n")
55 return((day_kernel + location_kernel + time_point_kernel))
56 }
57

3

58 forecast <- function(date, location, weather) {
59 clock <- paste0(seq(4,24,by=2))
60 date <- sub("^\\d{4}", "1970", date)
61 date <- as.Date(date) # Kill me.....
62 day <- abs(as.numeric(date - epoch))
63 # See lecture slides for predicting yhat-kernels.
64 total_kernel_sum <- vector(length = length(clock))
65 weighted_temperatures <- vector(length = length(clock))
66 similarities <- matrix(0, nrow(weather), length(clock))
67 stp <- 512 # Print steps for showing the progress...
68
69 # Loop through each observation and desired time.
70 for (i in 1:nrow(weather)) { # Shitty apply fails...
71 if (i%%stp==0) cat("Progress",(i/nrow(weather))*100,"%\n")
72 for (j in 1:length(clock)) { # Need to predict for each...
73 # Calculate the similarity for this observation and our desired response
74 similarities[i, j] <- forecast_kernel(c(location[1], weather[i,]$longitude),
75 c(location[2], weather[i,]$latitude),
76 c(day, weather[i,]$day), c(clock[j], weather[i,]$hour))
77 total_kernel_sum[j] <- total_kernel_sum[j] + similarities[i, j]
78 weighted_temperature <- similarities[i, j] * weather[i,]$air_temperature
79 weighted_temperatures[j] <- weighted_temperatures[j] + weighted_temperature
80 }
81 # Apply the Nadaraya-Watson kernel regression.
82 } ; return(weighted_temperatures / total_kernel_sum)
83 }
84
85 args <- commandArgs(TRUE)
86 day <- if (!is.na(args[1])) as.Date(args[1]) else as.Date("2013-11-04")
87 latitude <- if (!is.na(args[2])) as.numeric(args[2]) else 58.4274
88 longitude <- if (!is.na(args[3])) as.numeric(args[3]) else 14.826
89 temperatures <- forecast(day, c(longitude, latitude),
90 weather[indx,]) # Kill me...
91 cat("Forecast (in oC) for the", as.character(day),
92 "at 04:00:00 - 24:00:00 in", longitude, latitude,
93 "(longitude, latitude)\n")
94 cat(temperatures, "\n")
95
96 setEPS()
97 cairo_ps("forecast")
98 plot(clock, temperatures, xlab="Time of Day",
99 ylab="Temperature Celsius")

100 dev.off()

4

Introduction to Machine Learning
Individual Laboration Report –6–

Erik Sven Vasconcelos Jansson
erija578@student.liu.se
Linköping University, Sweden

December 20, 2016

Finally, the last machine learning topic covered
are artificial neural networks. These estimators are
very flexible, such that even a single layer feed-
forward neural network complies with the universal
approximation theorem, presented by Csáji [Csá01]:

Theorem 1 (Universal Approximation Theorem).
Any artificial feed-forward neural network with a
single hidden layer, containing a finite amount of
neurons, can approximate any continuous functions
on the compact subset Rn (with restrictions on σ).

Proof. Csáji’s [Csá01] derivation of Theorem 1.

Basically, the theorem states that even simple
neural networks can represent interesting functions,
given some suitable subset of activation functions.
For this assignment, we want to approximate sinx,
where we are given 25 observation for training set.
Also, we are given a validation set of length 25 for
checking if our neural network is under/overfitting.
We are using the R package neuralnet for our fit
with 10 hidden units in a single hidden layer, also
initialized with random weights in [−1, 1] interval.
See Listing 1 for the entire assignment source code.

For the curious, Equations 1, 2, and 3 are given:

σ(u) =
1

1 + e−u
(1)

w(i) = w(i−1) − ηk∇E(w(i−1)) (2)

ŷj(x) = σ(w0 +
H∑

h=1

σ(w0h +wᵀ
hx)) (3)

1. Sigmoid Activation Function: “S”-shaped
function which converges σ(u) = 1 as u → ∞
and σ(u) = 0 as u→ −∞. Used in Equation 3.

2. Batch Gradient Descent: finds the “step”
in the right direction for minimizing error E.
This is achieved with the gradient of E given in
respect to the weights w; giving a hyperplane.

3. Single-Layer Neural Network Estimator:
uses Equations 1 and 2 to find ŷj by finding the
parameters w in each layer (a linear equation)
by means of gradient descent and producing
a non-linear result in subsequent layers by the
activation function. This is the primary reason
why neural networks are so flexible & general.

By using a threshold for the gradient descent we
can stop the neural network from either overfitting
or underfitting. This simply done by increasing the
threshold iteratively and taking the validation set’s:

Threshold S.S.E.

0.001 0.01367691527
0.002 0.01262419958
0.003 0.00988418900
0.004 0.00850089424
0.005 0.00955545744
0.006 0.00974372099
0.007 0.01583926857
0.008 0.01649252416
0.009 0.02112490377
0.010 0.02735909554

Table 1: Neural Network Values

1

After finding the “optimal threshold” of 0.004 by
picking the 4th iteration (where i = 4 that is) which
gives the least amount of error for a validation set,
we plot the best neural network in Figure 1, and
also the predictions in Figure 2 for a sine function.
Notice that the fit is pretty good, and the estimator
gives a pretty “spot on” prediction for the function.
It seems neural networks are incredibly powerful,
but take time to train and are harder to reason
about (for example, how do we choose the number
of hidden layers and units? How long will it take?)

References
[Csá01] Balázs Csanád Csáji. Approximation

with Artificial Neural Networks. Faculty
of Sciences, Etvs Lornd University, Hun-
gary, 24:48, 2001.

[FHT09] Jerome Friedman, Trevor Hastie, and
Robert Tibshirani. The Elements of Sta-
tistical Learning. Springer series in statis-
tics, Berlin, second (11th) edition, 2009.

[GF10] Frauke Günther and Stefan Fritsch. neu-
ralnet: Training of Neural Networks. The
R Journal, 2(1):30–38, 2010.

Figure 1: Neural Network

Figure 2: Neural Network’s Produced Predictions
(in the graph are raw values and predicted values).

2 4 6 8 10

-1
.0

-0
.5

0
.0

0
.5

1
.0

x

s
in

2

Appendix

Listing 1: Feed-Forward Backpropagating Neural Network Sine Estimator Script

1 library("ggplot2")
2 library("reshape2")
3 library("neuralnet")
4 library("grDevices")
5 set.seed(1234567890)
6
7 variable <- runif(50, 0, 10)
8 sine <- data.frame(x=variable, sin=sin(variable))
9 training <- sine[1:25,] ; testing <- sine[26:50,]

10
11 candidate_error <- Inf
12 units <- 10 # Hidden baby!
13 candidate_threshold <- Inf
14 weights <- runif(50, -1, +1)
15
16 for (threshold_attempt in 1:10) {
17 thresholdi <- threshold_attempt / 1000
18 nn <- neuralnet(sin~x, training, units,
19 startweights = weights,
20 threshold = thresholdi)
21
22 predicted <- compute(nn, testing$x)
23 error <- sum((testing$sin - predicted$net.result)^2)
24 cat("NN Threshold", thresholdi, "->", error, "SSE \n")
25 if (error < candidate_error) {
26 candidate_error = error
27 candidate_threshold = thresholdi
28 }
29 }
30
31 nn <- neuralnet(sin~x, training, units,
32 candidate_threshold,
33 startweights = weights)
34 predicted <- compute(nn, testing$x)
35
36 plot(nn)
37 setEPS()
38 cairo_ps("predictions.eps")
39 plot(testing$x, predicted$net.result, col = "red",
40 xlab = "x", ylab = "sin")
41 points(sine, col = "blue")
42 dev.off()

Listing 2: Output About the Produced Neural Network in the Assignment

1 $response
2 sin
3 1 0.31115890803
4 2 -0.65787112371
5 3 0.85356988285
6 4 0.92820698816
7 5 0.71194544538
8 6 0.95969186755
9 7 0.27531467859

10 8 -0.03662256168

3

11 9 -0.29718457265
12 10 -0.43427724087
13 11 0.27176755816
14 12 0.96762993527
15 13 0.87023024548
16 14 0.90319426880
17 15 0.53211225475
18 16 -0.90515370065
19 17 -0.99209419164
20 18 0.75493516282
21 19 0.43639270658
22 20 0.42400734122
23 21 0.77254200174
24 22 0.68138797265
25 23 0.32070401674
26 24 -0.99484612705
27 25 -0.82027249428
28
29 $covariate
30 [,1]
31 [1,] 9.1083657276
32 [2,] 3.8595812093
33 [3,] 8.4019783861
34 [4,] 7.4727497180
35 [5,] 7.0754500036
36 [6,] 7.5690891198
37 [7,] 0.2789170155
38 [8,] 9.4614087138
39 [9,] 9.7265206091
40 [10,] 9.8740137112
41 [11,] 9.1495487187
42 [12,] 1.3156641065
43 [13,] 1.0556694935
44 [14,] 7.4103393406
45 [15,] 6.8442786904
46 [16,] 4.2733338126
47 [17,] 4.5865617390
48 [18,] 8.5692227143
49 [19,] 2.6900070859
50 [20,] 0.4378655413
51 [21,] 0.8828348410
52 [22,] 7.0328426105
53 [23,] 2.8151199827
54 [24,] 4.8139597056
55 [25,] 4.1034799209
56
57 $err.fct
58 function (x, y)
59 {
60 1/2 * (y - x)^2
61 }
62 <environment: 0x339a758>
63 attr(,"type")
64 [1] "sse"
65
66 $act.fct
67 function (x)
68 {
69 1/(1 + exp(-x))
70 }
71 <environment: 0x339a758>
72 attr(,"type")

4

73 [1] "logistic"
74
75 $linear.output
76 [1] TRUE
77
78 $data
79 x sin
80 1 9.1083657276 0.31115890803
81 2 3.8595812093 -0.65787112371
82 3 8.4019783861 0.85356988285
83 4 7.4727497180 0.92820698816
84 5 7.0754500036 0.71194544538
85 6 7.5690891198 0.95969186755
86 7 0.2789170155 0.27531467859
87 8 9.4614087138 -0.03662256168
88 9 9.7265206091 -0.29718457265
89 10 9.8740137112 -0.43427724087
90 11 9.1495487187 0.27176755816
91 12 1.3156641065 0.96762993527
92 13 1.0556694935 0.87023024548
93 14 7.4103393406 0.90319426880
94 15 6.8442786904 0.53211225475
95 16 4.2733338126 -0.90515370065
96 17 4.5865617390 -0.99209419164
97 18 8.5692227143 0.75493516282
98 19 2.6900070859 0.43639270658
99 20 0.4378655413 0.42400734122

100 21 0.8828348410 0.77254200174
101 22 7.0328426105 0.68138797265
102 23 2.8151199827 0.32070401674
103 24 4.8139597056 -0.99484612705
104 25 4.1034799209 -0.82027249428
105
106 $net.result
107 $net.result[[1]]
108 [,1]
109 1 0.30018554412
110 2 -0.64466078637
111 3 0.82577426828
112 4 0.95531707389
113 5 0.71041413678
114 6 0.98604140527
115 7 0.27220011825
116 8 -0.02393016651
117 9 -0.27977135370
118 10 -0.42452441939
119 11 0.26376340300
120 12 0.97423750701
121 13 0.86489547875
122 14 0.92926095080
123 15 0.49438343511
124 16 -0.91926885456
125 17 -0.98908629285
126 18 0.72304892189
127 19 0.42816650637
128 20 0.43013044493
129 21 0.76891173652
130 22 0.67393025023
131 23 0.32904062832
132 24 -0.97934291894
133 25 -0.83193245662
134

5

135
136 $weights
137 $weights[[1]]
138 $weights[[1]][[1]]
139 [,1] [,2] [,3] [,4] [,5]
140 [1,] 0.3718763846 -10.931812117 8.275060257 7.8216380497 1.551228805
141 [2,] 0.5081317757 1.628735531 -2.289303563 0.1166254588 -0.594052483
142 [,6] [,7] [,8] [,9] [,10]
143 [1,] 4.7453831203 -0.6070429987 9.38110372186 -0.1377222063 5.958245683
144 [2,] -0.4968713811 0.1924524647 0.09270470267 3.1685937697 -2.602280174
145
146 $weights[[1]][[2]]
147 [,1]
148 [1,] -0.06529714022
149 [2,] -0.70033511720
150 [3,] 3.84669442716
151 [4,] 2.74586539382
152 [5,] -0.75978348453
153 [6,] -9.09090264177
154 [7,] 6.65416477397
155 [8,] -8.24869453812
156 [9,] -0.20335986240
157 [10,] 1.00884789102
158 [11,] 2.01492912933
159
160
161
162 $startweights
163 $startweights[[1]]
164 $startweights[[1]][[1]]
165 [,1] [,2] [,3] [,4] [,5]
166 [1,] 0.4591262657 -0.5031667114 0.9014065554 0.9589186665 0.3389983536
167 [2,] 0.5853618421 0.4307389595 -0.8788680169 0.4978831881 -0.5358421607
168 [,6] [,7] [,8] [,9] [,10]
169 [1,] 0.6293357364 -0.4028865024 0.5968314419 -0.07648990629 0.7421438890
170 [2,] -0.4464168334 -0.3094406570 0.9041418806 -0.17025629710 -0.8588890089
171
172 $startweights[[1]][[2]]
173 [,1]
174 [1,] -0.2698646844
175 [2,] -0.9254528601
176 [3,] 0.3498687637
177 [4,] -0.7230960354
178 [5,] -0.9836924160
179 [6,] -0.6452815034
180 [7,] 0.8491520174
181 [8,] 0.6410233583
182 [9,] -0.4020887311
183 [10,] 0.9406797229
184 [11,] 0.2142777084
185
186
187
188 $generalized.weights
189 $generalized.weights[[1]]
190 [,1]
191 1 -4.18437409317
192 2 0.84720544205
193 3 -3.90202008113
194 4 8.87306916010
195 5 4.06386829427
196 6 18.83336456829

6

197 7 5.28857232424
198 8 38.75962317972
199 9 2.72921588482
200 10 1.62852618574
201 11 -4.58128912031
202 12 13.07325336492
203 13 4.31497701909
204 14 6.93919826366
205 15 4.07243773606
206 16 0.23010347764
207 17 0.02853630559
208 18 -3.31477743585
209 19 -3.26159533671
210 20 3.80902182260
211 21 3.41516125086
212 22 3.98677345674
213 23 -3.57280260613
214 24 -0.06878886818
215 25 0.40865817424
216
217
218 $result.matrix
219 1
220 error 0.003576080337
221 reached.threshold 0.003929680826
222 steps 23174.000000000000
223 Intercept.to.1layhid1 0.371876384634
224 x.to.1layhid1 0.508131775660
225 Intercept.to.1layhid2 -10.931812117300
226 x.to.1layhid2 1.628735530657
227 Intercept.to.1layhid3 8.275060257474
228 x.to.1layhid3 -2.289303563425
229 Intercept.to.1layhid4 7.821638049688
230 x.to.1layhid4 0.116625458773
231 Intercept.to.1layhid5 1.551228805249
232 x.to.1layhid5 -0.594052483023
233 Intercept.to.1layhid6 4.745383120333
234 x.to.1layhid6 -0.496871381057
235 Intercept.to.1layhid7 -0.607042998673
236 x.to.1layhid7 0.192452464714
237 Intercept.to.1layhid8 9.381103721859
238 x.to.1layhid8 0.092704702673
239 Intercept.to.1layhid9 -0.137722206303
240 x.to.1layhid9 3.168593769723
241 Intercept.to.1layhid10 5.958245682591
242 x.to.1layhid10 -2.602280174422
243 Intercept.to.sin -0.065297140222
244 1layhid.1.to.sin -0.700335117198
245 1layhid.2.to.sin 3.846694427157
246 1layhid.3.to.sin 2.745865393824
247 1layhid.4.to.sin -0.759783484527
248 1layhid.5.to.sin -9.090902641770
249 1layhid.6.to.sin 6.654164773966
250 1layhid.7.to.sin -8.248694538124
251 1layhid.8.to.sin -0.203359862396
252 1layhid.9.to.sin 1.008847891021
253 1layhid.10.to.sin 2.014929129330
254
255 attr(,"class")
256 [1] "nn"

7

