TSBKO7 Computer Graphics
Project Report for
NQ Sokoban

Erik S. Vasconcelos Jansson
erijab578@student.liu.se
Linkoping University, Sweden

May 25, 2016

1 Introduction

This document describes a preliminary project
specification for the logic puzzle game NQ Sokoban,
which is a game based on the classical Sokoban
game described in Section 1.1 and on the aesthetics
of the game FDGE described shortly in Section 1.2.
However, there are some gameplay twists. There-
fore, Not Quite Sokoban is described in Section 1.3.

1.1 Sokoban

The very popular and classic logic puzzle game.
Sokoban is a game where the player is tasked to
push stones/crates/boxes to a goal area with as few
moves as possible. Originally released and invented
in 1982 [Lin98] by Hiroyuki Imabayashi of Think-
ing Rabbit, a game studio in Takarazuka, Japan.
The original game became available in Europe
around 1984 to the Apple Ile, published by Spec-
trum Holobyte Inc. Interestingly, the name Sokoban
literally means warehouse man in Japanese.

1.2 EDGE (i0S)

A puzzle game developed and published by Mo-
bigame in 2008 [Wikl5] for the Apple iPhone.
EDGE is a game where one guides a cube around
different levels collecting as many prisms as possi-
ble before reaching the end of a level. By swiping
on the screen the player can move the cube and also
climb surfaces by balancing on them. The aesthet-
ics are very minimal, only featuring a wvoxel world.
See [Wik15] for more information (and gameplay).

1.3 NQ Sokoban

Rather than being a straight up 3D Sokoban clone
(there are already a lot of those), the game project
Not Quite Sokoban tries to innovate somewhat by
adding a few extra gameplay twists/mechanics.
Besides the original rules of Sokoban described in
Section 1.1, additional layers (an extra dimension
that can be traversed) are added to the world/level.
These create interesting implications, especially if
disallowing blocks to be pushed up a layer but still
allowing them to fall down several of these. An
additional mechanic that can be envisioned is to
disallow traversal through a path that has an abyss
(meaning that there are no blocks to fall down to)
but if a goal area is there, the player is allowed to
build a “bridge” by pushing a movable block there
(gaining access to a new area). See Figure 2 for e.g.
The above changes to the gameplay mechanics do
not affect normal Sokoban levels, so NQ Sokoban is
essentially “backwards compatible” (see Figure 1)
with the original Sokoban levels given that these
only use compatible mechanics (2 layers). Addi-
tional mechanics could be added later, but addi-
tional complexity would make the game inelegant.

LT

Figure 1: Concept/Draft of Aesthetics

f=]

—

[==] R}

[==] K] Jen) fan}
— [e=}
COH[\’JP—‘O
[}

(=]

Figure 2: Some 3D Gameplay Twists

2 Requirements
2.1 Obligatory
e Voxel-like world representation.
e Colors vary depending on object type.
e Rules of NQ Sokoban & original Sokoban.
e Blinn-Phong [Rag08, p. 66] reflection model.
e Flat shading [Rag08, p. 69] for these.
e Collision detection (part of the rules).
e Loading levels via JSON or similar.

e Animation for player movement.

2.2 Probable

Modifiable “color themes” with level.

e Packs of levels, also in JSON or similar.

Overlay with name of level and current moves.

High score list for level (or level pack).

Different camera modes (e.g. top view).

Customizable textures for objects (not colors).

2.3 Luxury
e Screen-space ambient occlusion.
e Sound effects for pushing and winning.
e Neat transition between levels (with score).

e Bump mapping for customizable textures too.

3 Technologies

e C/C+H+: since it performs quite well.

e OpenGL: for actual computer graphics.

e GLFW: window/context creation and input.
e GLEW: extension wrangler for latest GL.

e GLM: nice interaction between GLSL.

e JSONCpp: for parsing JSON text files.

e libPNG: for loading textures (if any).

e libOGG, libVorbis & OpenAL: audio.

e FreeType: for loading font glyphs.

4 Implementation

Before actually starting to build the game itself, it
was reasoned that a game framework be done first.
Doing this would enable easier development and
modification of the game later, since two different
parts would be built, the framework and the game,
decoupling them from each other, leading to a gen-
eral framework that can be used for future project
or extensions, and a game that wouldn’t be tightly
coupled with the nasty low-level moving parts of it.

Additionally, it was decided that the game would
also be subdivided into two parts, leading to higher
cohesion and less coupling, with the primary game
visualization and game logic subsystems separated.
Allowing “hot-swapping” of modules with a lower
amount of effort. Therefore, game logic is only used
to update the game rules according to states re-
ceived, while game visualization issues queries of
model locations to draw based on it, and only that.

Rough overview of the combined architecture of
the game framework, game visualization and game
logic follows in the coming page within a diagram.
All of this can be found in the attached source code.

4.1 Game Framework

Basically contains a series of useful wrappers for
various different foreign libraries and then builds on
these to build abstractions suitable for a complete
game framework. Window abstract a lot of the de-
tails and management in creating a platform inde-
pendent window and OpenGL context with GLF'W.
Renderer then uses it to supply OpenGL settings,
where it is also later used for drawing some models.

Before doing so though, there are three essential
components which are necessary to describe a suit-
able game scene: Camera, Model (s), Light (s).
Using these, the renderer can only draw one model,
where several subsequent draw calls are acceptable
before issuing a display command to the window
for swapping buffers. Animations can be specified
with the Motion package, which contain several
Robert Penner’s easing equations [Pen02], which
are used to specify predetermined motion patterns.

Perhaps the most central module is the Model,
which is just glue for uniquely specifying several vi-
sual attributes of the model. Material, Texture
Sample (s), Mesh & Shader (s) are used there.

ng::Window
%> 0..n
ng::Camera —<> nq::Renderer £>— ng::Light nqg::Pack
‘ 0..n
ng::Motion ng::Model ng::Sokoban ng::Level
I
\ |
nq::Material nq::Sampler ng::Mesh ng::Shader '.;J
ng::Texture 0..n l i 0..n
0..n
<% @ g:Resource_scope
ng::Image ﬁ

4.2 Game Mechanics

After the framework is up and running, we can both
draw and read input, which is all that is necessary.
Essence of the game rules and logic are contained
within the Sokoban class, which is given level data
as input as a precondition for before starting. Data
is essentially one layered cake of two-dimensional
arrays, each specifying one height level. By using
this data, together with the action the player wants
to perform, the game will step the state of the
world forward, while applying all of the game rules.
For example, collision is just a forward array check.
Additionally, the player should be able to undo or
reset his actions, which can be done since the game
keeps track of previous state by the means of a
stack, which can be unwound up to a previous state.

However, how does one load new levels before
the same old one gets boring? By using the Level
module, files are read into memory and parsed
through a JSON parser, which gives all of the meta
information needed. The level data itself is con-
tained within image files, which are loaded and
merged using libpng, and then passed to Sokoban.

START

Clear and Draw
All Models

no

—>

R

model

positions yes

Load Pack/Level

Update Sokban
Game State

Write Score

level
data

i

Initialize Game
State with Data

i

display
settings

A

close window

go!

Create Window
and Renderer

‘ MAIN LOOP }4

T

required
resources

setup
complete

y

Load Textures,
Meshes, Shaders

scene

Create Camera,
Lights & Motion

‘ EXIT ‘

4.3 Game Flow

Now follows a brief description on how all of these
modules actually develop and interact over time.
See the flowchart above, it’s mostly divided in three
phases: setup, main loop and ezit. Setup consists
of initializing windows, renderers and game states,
while loading in all required resources for the scene.
Loading in level data and converting it to a mesh
required a custom class, a Mesh: : Builder, which
merges together several vozels into one single mesh.

After the scene has been successfully setup, the
game starts listening for user input, and updates
the internal Sokoban game state accordingly or,
if exiting, closes closes down/frees all open re-
sources. By using these states, the game can de-
termine where to position the more dynamic parts
of Sokoban, which are the player, crates/moveables
in the correct world position, by transformations.
With this, the model can be draw to the buffer,
which applies the reflection calculations within the
vertex shader, which implies fast Gouraud shading.

Finally, once the game state has determined the
player has won, best scores are stored down to disk.

4.4 Problems

Since this is a project, several issues were encoun-
tered and solved. Primary ones are listed therefore:

e Draw calls: having huge or even medium
sized levels caused performance problems since
the overhead of doing single draw calls for all
voxels taxed the bus greatly, which was solved
by merging voxels ussed for the level into one
single mesh, only requiring on single draw call.

e Phong shading: since the target hardware
was old (Intel GMA 4500), pumping through
the reflection model operations on each frag-
ment became unfeasible, and would slow down
the game considerably when the camera was
close to the geometry, even for small levels,
so Gouraud shading was employed by moving
these calculations to the vertex shader instead.

¢ Resource handling: even with C++’s RAII,
certain resources needed to be managed with a
Resoure_scope wrapper class to model the
dependencies of e.g. meshes to the data buffers.

5 Conclusions

A fully working games has been implemented,
which is both mechanically unique and expandable.
While several aspects could have been improved,
such as dynamic shadows or ambient occlusion, the
game accomplishes an non-intrusive aesthetic feel.
Below follows a list of accomplished requirements:

e Voxel world: accomplished, done by loading
level data through the custom file format and
then merging together a static mesh geometry.

e Varying colors: accomplished, by using the
uniform variables, these could be changed on
the fly to reflect the game state & object types.

e Game rules: accomplished, simply uses the
loaded level information to check that given in-
put actions are consistent with the game rules.

e Flat shading: accomplished, uses the Phong
reflectance model in vertex shader, but has flat
shading anyway since the voxel normals re-
main constant even after GLSL interpolation.

e Collision detection: accomplished, simple,
just check the loaded array and apply game
rules to see if player/moveable is colliding with
anything of relevance, if so, don’t apply action.

e Loading levels: accomplished, by using an
external library for parsing JSON, the custom
file format was fairly straight forward, where
level packs can also be specified along with
score data and relevant level meta information.

e Animations: sort of accomplished, camera
has smooth transitions between states, how-
ever, game objects are still moving in voxel
steps, which should also have been achieved :(

e Themes & Packs: player can specify what
color the different game objects should be for
his/her own level, which is done via the level
file format. Also, level packs, can be specified.

Future work should be focused on improving the
aesthetic depth of the game with better shadows,
smooth object interpolation between moves, use by
having a graphical menu and interface with texts,
loading Sokoban files would be nice out-of-the-box.
Finally, for the final polishes, non-intrusive sound
effects and an integrated level editor would be nice.

Figure 3: Screenshot of the Current Build

References

[AMHHO8] Tomas Akenine-Moller, Eric Haines,
and Naty Hoffman. Real-time render-
ing. CRC Press, 2008.

Fletcher Dunn and Ian Parberry. 3D
math primer for graphics and game de-
velopment. CRC Press, 2011.

[DP11]

Christer Ericson. Real-time collision
detection. CRC Press, 2004.

[Eri04]

[Lin9g] Scott Lindhurst. Sokoban: History,
levels and other implementations. On-
line documentation, Princeton Univer-

sity, 1998.

[Pen02] Robert Penner. Robert Penner’s
Programming Macromedia Flash MX.

McGraw-Hill, Inc., 2002.

[Rag08] Ingemar Ragnemalm. Polygons feel no

pain, volume 1. Bokakademin, 2008.

[Sch14] Jesse Schell. The Art of Game Design:

A book of lenses. CRC Press, 2014.

[Wik15] Wikipedia. Edge (video game), Game-
play, 2015. [Online; accessed 23-

January-2016).

	Introduction
	Sokoban
	EDGE (iOS)
	NQ Sokoban

	Requirements
	Obligatory
	Probable
	Luxury

	Technologies
	Implementation
	Game Framework
	Game Mechanics
	Game Flow
	Problems

	Conclusions

