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Abstract

Performance in soft real-time applications (e.g.
video games and scientific simulations) is relevant
since these must satisfy real-time constraints. The
flyweight design pattern is claimed to reduce the
memory consumption, a resource constraint.

The purpose of this paper is to analyze the effect
of the flyweight pattern in real-time applications
(primarily in video games) regarding performance.
Measurements are made pertaining to the memory
consumption and runtime timing properties.

Data is gathered by the means of a performance
benchmark, several trials testing the relative dif-
ference between an implementation using the fly-
weight design pattern and another when not.

This data is then used to construct graphs that
display the following properties: reduced memory
usage when the amount of shared data instantiated
is significant and decreased runtime overhead in
program sections taking advantage of the beneficial
properties of the flyweight design pattern.

Prerequisites

Knowledge of software development and common
terms and acronyms used within. Comfortable
in object-oriented programming, preferably modern
C++. Computer architecture knowledge is benefi-
cial in certain sections. Refer to literature such as
C++ Primer [LLM12] by Lippman and Computer
Organization and Architecture [Sta12] by Stallings.
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1 Introduction

The difference in performance caused by applying
the flyweight design pattern in many soft real-time
applications may not be immediately obvious, but
as will be seen, there is a relationship (in more ways
than one). Before hypothesizing why, it is useful to
describe real-time systems and the flyweight indi-
vidually since they are the building blocks of the
paper and require clear definitions and motivation.

1.1 Real-Time Systems

Software systems that are subject to real-time con-
straints are called real-time systems [Juv98]. These
are systems that need to complete their task within
a certain deadline in order to be useful. Real-time
systems have become an essential component in our
society, in fact, several parts of the modern world
depend on these operating correctly.

Medicinal equipment (with accompanying soft-
ware) is an excellent example of a hard real-time
system that requires precise timing and system sta-
bility in order to guarantee human safety. Another
such system is the stock market, where the loss
isn’t human, but monetary. Other systems where
the consequences are not as severe are called soft
real-time systems, where only the utility and qual-
ity of the system is degraded (not a failure).

Only soft real-time applications are going to be
studied here. More specifically, the domain that is
primarily going to be explored (and will thus be
the focus) are video games. Games are soft real-
time since a deviation from optimal operation only
implies a degradation in system quality (usually in
the form of fewer screen or game world updates).

1.2 The Flyweight Pattern

First officially coined in the article Glyphs [CL90],
the flyweight design pattern was formally intro-
duced in the famous Design Patterns [GHJV94]
book by the authors commonly referred to as the
Gang of Four. The book describes it succinctly:
“Use sharing to support large numbers of fine-
grained objects efficiently” – flyweight description.

Not surprisingly, similar techniques were already
being used in practice long before being formally
defined, one such was ET++ [WGM88] written in
1988 by researchers exploring GUIs with OOP.

Flyweight objects can minimize the amount of
redundant copies of a certain resource/object by
reusing it. This is achieved by separating the com-
mon and specific data of an object. Common data
is the subset of the object that remains static and
can thus be shared between objects of the same
type, only requiring a single instantiation. The spe-
cific data is used to differentiate between objects,
usually by modifying parameters that change how
the common data is interpreted and thus behaves.

Consider the following example: a virtual forest,
every single tree has a 3D model describing how it’s
going to be draw on the screen. This forest is quite
boring, so all trees look very similar, therefore all
could use the same 3D model. The only parameter
that needs to be different is the position. By using
a flyweight, one can separate the data for a tree in
two parts: the common 3D model for all trees and
the specific position for each one. This is an adap-
tation from Game Programming Patterns [Nys14],
a book describing useful design patterns for games.

The motivation for choosing specifically the fly-
weight for analysis, instead of other patterns is be-
cause it relates closely to video games (the primary
domain to be tested). This pattern is usually used
unconsciously by game developers, since it seems
logical that by reusing certain resources, perfor-
mance and memory benefits may occur. By pro-
viding empirical evidence, this paper attempts to
verify these claims and provide the resulting data.

1.3 Hypothesis and Question

Soft real-time applications need to satisfy real-
world timing and resource constraints in order to
be useful. Applications instantiating a substantial
amount of similar objects (that have common data)
can be divided into parts by using a flyweight, this
will reduce the allocation of data by sharing that
which is common. Therefore, by that reasoning, the
application of the flyweight design pattern in the
context of soft real-time applications should help
better fulfill the resource constraint problem.

The purpose of this paper is to assert the va-
lidity of the above implication, while also gath-
ering data to provide results regarding timing so
a conclusion can be drawn whether the flyweight
design pattern improves performance for soft real-
time applications that instantiate similar objects.
Glyphs [CL90] have also done similar experiments.
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2 Method

In order to provide answers to the research ques-
tions posed in section 1.3, a quantitative method
will be used, relying mostly on empirical results and
a hands on (practical) approach. These data will be
collected by the means of a benchmark, a program
designed to assess relative performance by execut-
ing several trials measuring the desired properties.

2.1 Benchmarking Environment

Since the domain of computer games has specifi-
cally been selected for analysis (within soft real-
time systems, see section 1.1), an appropriate set
of trials needs to be constructed, each reflecting and
testing relevant properties in such applications.

While many modern video games are presented
from a three-dimensional perspective, there is still a
strong and thriving market (especially for indepen-
dent game developers) for two-dimensional games.
The concept of a sprite is commonplace in such
games, this is a two-dimensional image that repre-
sents some entity in the game world (possibly with
accompanying animation, a sprite sheet).

Similar to the example given in section 1.2 of the
virtual 3D forest, many of these sprites are going
to instantiate redundant information that could in-
stead be shared between instances. The data that is
going to be shared in this case is the image (or more
formally, texture) representing the object. Specific
data to a sprite instance may include: position, ro-
tation, velocity, angular velocity and object center.

Figure 1: Cave Story+ developed by Nicalis.

For instance, look at figure 1. The components of
this game world are divided into a grid of sprites,
usually called tiles in such a context. As can be
seen, several of these tiles use the exact same tex-
ture, the only difference between them is the posi-
tion they are specified. By using something akin to
the flyweight design pattern, the game engine does
not need to instantiate redundant copies of the tex-
tures and instead reuses them for other tiles.

This is the behavior that will be targeted in the
benchmark, by creating a substantial amount of
sprites and measuring the difference in performance
one can assess the effect of the flyweight design pat-
ten in video games. More specifically, the trial will
be a virtual asteroid field that is bound to an area
(the size of the computer screen in this case).

All these asteroids will look similar and hence
use the same texture, each will also contain internal
information about position, rotation and velocity.
Each asteroid will have an initial state that is ran-
dom, both position and velocity will be generated
upon creation. Every cycle in the game loop will
displace the asteroids by their respective velocities
and be analyzed/handled for collision, finally, these
are displayed on the screen with their texture (that
might be shared via the flyweight design pattern).
See algorithm 1 below, it describes roughly what
the benchmarking environment will be doing.

Algorithm 1 Asteroid field benchmark trial.

Require: count, texture, flyweight?
asteroids← ∅
populate(asteroids, count)
share?(texture, ∀a ∈ asteroids, flyweight?)
initialize(∀a ∈ asteroids, rndstate)
repeat
exit← input(user)
for (∀a ∈ asteroids) do

check-collision(a, screen)
handle-collision(a, av)
displace(a, av)
rotate(a, aθ)

end for
display(∀a ∈ asteroids)

until (exit = yes)

The relevant implementation details of the above
algorithm are presented in section 2.3. Next, the
performance properties of the trial are presented.
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2.2 Properties for Analysis

Observing the structure of algorithm 1 reveals that
there are three distinct stages the trial can be in:
initializing, updating and rendering. All of these
affect the applications functional quality [Cha13],
more precisely, the performance quality. Based on
these, the following metrics have been chosen:

• Allocation time: how long it takes (in mil-
liseconds) for the trial to instantiate the list
of sprites that represent the asteroids. Also,
the texture itself needs to be allocated, by not
sharing it with a flyweight the program needs
to create one for each new asteroid.

• Memory usage: the amount of storage re-
quired to execute the trial, measured in kilo-
bytes. Because most textures today are instan-
tiated directly on the graphics processing unit’s
video memory, this will also be measured.

memory = count× sizeof(asteroid) +

+

{
sizeof(texture), if flyweight

else count× sizeof(texture)

• Update time: duration taken for all asteroids
to transition to their next state, measured in
milliseconds. The data used for the update is
internal, no potentially shared data (texture in
this case) via a flyweight is read or modified.

• Render time: how long it takes for all aster-
oids to be drawn on the screen. This will de-
pend on how the common data is stored, that
is, if flyweight is being used or not for shar-
ing. This metric is of some importance for the
paper, along with the next bullet point, will
provide the information required to assess the
effect of flyweight on the timing constraint.

• Frame rate: the amount of frames (renders of
the entire scene) per second, which can also be
expressed as the frame frequency in hertz. This
metric is affected by both the update and ren-
der time in the course of one second. The most
common measure of performance in games.

Data gathered from the benchmark will contain
all of the above metrics, these are presented later in
section 3. The conclusion presented depends heav-
ily on these not being skewed performance metrics.

2.3 Implementation

Before presenting the results, a short rundown of
the benchmark implementation is described below.

The chosen programming language for this task
was C++, since it is commonly used in the indus-
try for game development. Additionally, the simple
media library SDL2 was used to assist in render-
ing. The source code in its entirety can be found at:
gitlab.ida.liu.se/erija578/benchmark.

First, the relevant structure and operations of
the Sprite and Sprite factory are presented.
These are the equivalents of the Flyweight and
FlyweightFactory constructs presented in the
Design Patterns book [GHJV94, p. 198], but are
different in some aspects (e.g. textures are stored):

class Sprite {
public:

virtual ˜Sprite() = default;
void push(double, double);
void move(double, double);
void rotate(double);
virtual void update();
void render(SDL_Renderer*) const;

private:
SDL_Rect source_{0, 0, 0, 0};
SDL_Rect destination_{0, 0, 0, 0}
SDL_Texture* texture_{nullptr};
SDL_Point center_{0, 0};
double angle_{0.0};

};

As with most of this section, several parts of the
code have been left out for brevity. The size of the
above structure is reported to be 104 bytes. Upon
closer inspection, this should be smaller, the rea-
son for this is because the compiler needs to align
the data structure by applying padding, see [Dre07].
The only data that can be shared in the Sprite is
the SDL Texture as mentioned in section 2.1, all
other fields need to be allocated with the Sprite.
Instantiations are made by the Sprite factory:

class Sprite_factory final {
public:

Sprite create(SDL_Rect dest,
const std::string& path,
SDL_Renderer* renderer);

private:
// Texture size: 1990 bytes.
// Hash table: path -> resource.
std::unordered_map<std::string,

SDL_Texture*> textures_;
};
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Following the reasoning presented in algorithm 1,
the implementation is largely divided into three
parts. There are several steps that have been added
in comparison to the algorithm, most of these are
concerned with gathering timing information and
providing the results at the end of the benchmark.

Note, in the first three excerpts below that all
start by executing SDL GetTicks(), storing the
time when each sequence of operations (initializ-
ing, updating, rendering) started and then, when
finished, calculating the total time taken. All have
the following format: time = timeend − timestart.

unsigned alloc_start{SDL_GetTicks()};
std::vector<Sprite> sprites;
Sprite_factory sprite_factory;
for (std::size_t i{0}; i < amount; ++i) {

SDL_Rect dest{wdist(prng), hdist(prng),
TEXTURE_WIDTH, TEXTURE_HEIGHT};

if (!strcmp(bench, "flyweight")) {
sprites.push_back(sprite_factory.

create(dest, TEXTURE_PATH,
renderer));

} else if (!strcmp(bench, "nflyweight")) {
SDL_Texture* texture{

IMG_LoadTexture(renderer,
"share/texture.png")};

sprites.emplace_back(dest, texture); }
}

unsigned alloc_end{SDL_GetTicks()};
unsigned alloc_time{alloc_end -

alloc_start};

When initializing the benchmarking environ-
ment, two important structures are created:
std::vector<Sprite> and Sprite factory.
As described before, several Sprite objects are
going to be created to represent individual aster-
oids, the texture for these is stored and shared in
Sprite factory if testing the flyweight. Other-
wise, if the goal of the current trial is to asses the
performance when not implementing the flyweight,
the texture is re-instantiated for each new Sprite.

unsigned update_start{SDL_GetTicks()};
for (auto& sprite : sprites) {

// Displace, rotate and collide.
sprite.update(); }

unsigned update_end{SDL_GetTicks()};
unsigned update_time{update_end -

update_start};
update_time_sum += update_time;

Transitions each sprite to the next state by update.

unsigned render_start{SDL_GetTicks()};
SDL_RenderClear(renderer);
for (const auto& sprite : sprites)

sprite.render(renderer);
SDL_RenderPresent(renderer);
unsigned render_end{SDL_GetTicks()};
unsigned render_time{render_end

- render_start};
render_time_sum += render_time;

Upon rendering, the benchmark first clears the
frame buffer by issuing SDL RenderClear(), the
sprites list is then iterated through to write the
textures (wherever they are) to the frame buffer.
Then, the scene is displayed to the user by calling
SDL RenderPresent(), which is double buffered.
More detailed information about rendering can be
found in literature such as Ingemar Ragnemalm’s
Polygons Feel No Pain [Rag13].

if (current - previous >= 1000) {
framerate_sum += frames;
update_sum += update_time_sum/frames;
render_sum += render_time_sum/frames; }

After every second has passed in the benchmark,
the gathered data up until this point is stored in the
three variables displayed above. As can be seen, for
the update and render measurements, the sum of
these is collected every frame and is then divided
by the number of frames, resulting in the average
update/render time per frame. For the frame rate
itself, the probed frequency is gathered at frames.

alloctime = allocend − allocstart (1)

updateavg =
updatesum
duration

(2)

renderavg =
rendersum
duration

(3)

framerateavg =
frameratesum

duration
(4)

Finally, the results collected throughout the
benchmark for duration seconds will be written
to the stdout, which is normally a text terminal.
This is done by applying equations 1, 2, 3 and 4 to
the gathered data presented earlier in this section.

These results are presented in the coming pages.
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3 Results

By applying the aforementioned method described
in section 2, results regarding the metrics presented
in section 2.2 have been collected. In order to easier
reproduce the testing conditions, below follows the
test setup (running on a GNU/Linux distribution)
and the settings on which the benchmark was run.

3.1 Testing Hardware

• Intel i7 860 CPU: up to 3.46 GHz clock rate,
4 × 32 KiB L1 split cache (instruction, data),
4 × 128 KiB L2 unified cache and 8 MiB L3.

• AMD HD 5870 GPU: 850 MHz clock rate,
20 × 8 KiB L1 texture cache, 4 × 128 KiB L2
shared cache and 1024 MiB GDDR5 VRAM.

While this information might seem excessive, some
conclusions in section 4 depend on these being cor-
rect, particularly on the size of the data caches.

3.2 Benchmark Settings

These specific results pertain to the version of the
benchmark that executes each trial for 10 seconds
(to remove noise, giving average performance), for
both flyweight and non-flyweight versions of it.
The first trial in the benchmark begins by testing
100 sprites. This amount is then subsequently in-
cremented by 100 sprites after each trial, returning
the average performance and writing them to a file.

In the given implementation in section 2.3, there
is a benchmark driver script called run.sh, the ar-
guments that need to be given are: number of trials
that are to be run, step count after each trial, ini-
tial amount of sprites and finally probe time. The
results presented here were gathered with the fol-
lowing command: ./run.sh 100 100 100 10.

The results are then output to the files:
flyweight.res and nflyweight.res in the
same directory as the script driver. Both of these
contain the final results of each metric, divided in
columns and for each trial, separated by rows. E.g:

Count Alloc Frames Update Render
100 1ms 325.00 Hz 0.01ms 3.07ms
200 1ms 249.10 Hz 0.02ms 3.99ms
300 1ms 225.40 Hz 0.04ms 4.40ms

These are used to generate the upcoming graphs.

3.3 Allocation Time

Since the relative difference between the two
datasets below increases by several magnitudes as
the amount of sprites increases, the y-axis has been
chosen to display data logarithmically (in base 10).

Figure 2: Graph for allocation time.

While the data does contain a lot of noise (these
are not averaged), the relevant result provided here
is that the flyweight design pattern improves allo-
cation time given that enough data can be shared.
This effect scales relative to the difference in allo-
cation size between the specific and common data.

3.4 Memory Usage

Similar to the datasets presented in the previous
section, these are also shown in logarithmic format.

Figure 3: Graph for memory usage.

This is actually a sum of two storage types: stan-
dard memory (RAM) and video memory (VRAM).
These results can be interpreted similarly as in the
previous section, the flyweight design pattern re-
duces memory usage if there is data to be shared.
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3.5 Update Time

As described in the end of section 2.1, the update
procedure for each sprite does not take advantage
of the sharing property of the flyweight, this since it
only operates on its own specific data (no texture).

Figure 4: Graph for update time.

This is reflected by the datasets above, both fly-
weight and no flyweight results seem equivalent.
Hence, the flyweight design pattern does not af-
fect update time in any meaningful way given that
update itself does not operate on the shared data.

3.6 Render Time

These datasets are the inverse of the above section,
here the render procedure reads from the texture
and also some of the specific data (position, angle).

Figure 5: Graph for render time.

Because of these properties, the average time
taken to render a frame is steadily lower on the fly-
weight implementation. This is presumed to hold
only if the render method uses shared resources.

3.7 Frame Rate

This is the general metric for performance in
video games, as described by the Integrated
CPU-GPU Power Management for 3D Mobile
Games [PJPM14] article. It combines all runtime
overhead for updating and rendering, measured by
the number of frames displayed in one second.

Figure 6: Graph for frame rate.

Given the above datasets, the flyweight design
pattern consistently provides higher frame rates in
relation to the non-flyweight version. Since frame
rates are affected by both update time and render
time, better render time implies better frame rate.

4 Discussion

In this section are reflections regarding section 3,
what could be improved and conclusions (besides
those presented in section 5) that are derived by
the author but don’t have sufficient quantitative
proof to be stated as true in the final conclusion.

First, the data gathered here is mostly raw be-
sides the averaging done on-line in the benchmark.
While the results and conclusions (from them) are
accurate, a statistical analysis could also have been
done, giving more precise results and broader con-
clusions (e.g. providing performance increase rate).

Second, an interesting behavior in figure 6 is
present somewhere between 800 and 1000 sprites, a
considerable decline in frame frequency. The reason
for this (as reported by valgrind) is that the CPU’s
L2 cache is full, and must resort to main memory
(or the L3 8 MiB cache). If true, the flyweight im-
proves temporal cache locality, this since the same
data is queried, and can reside in the cache longer.
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5 Conclusion

The research question posed in section 1 was: how
does the flyweight design pattern affect the perfor-
mance of soft real-time applications, measured by
memory usage and timing constraints?

By applying the method presented in section 2,
data is generated that is then displayed in section 3
in the form of graphs. These graphs provide perfor-
mance comparisons between two implementations,
one where flyweight is used and one were it isn’t. If
the aforementioned process is correct, the following
answers to the question can be provided.

5.1 Memory Effects

By sharing common data, application of the fly-
weight design pattern reduces memory usage. This
has only proven to be beneficial if the difference of
the specific and common data is significant and a
great amount of these have been instantiated. Sim-
ilar assertions have been made by Glyphs [CL90].
The Design Patterns book [GHJV94] also provides
claims of reduced memory usage in this case.

5.2 Timing Effects

Derived from the graphs in section 3, the flyweight
design pattern reduces runtime overhead in sections
of the program that utilize the shared/common
portion of the object. More specifically, in the con-
text of video games, this implied lower allocation
time, reduced average rendering time and increased
average frame rate when using a shared texture.

Draft Changes

Many of these improvements were in response to
feedback given during the seminars. The author
would particularly like to thank the project group,
examinator and course staff for their help. The
modifications since the initial draft are listed below:

• Specified what is analyzed (via method).

• Measurements are now specified (in method).

• Context for flyweight specified (in method).

• Most terms are implicit (via prerequisites).

• Completed remaining sections.
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