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ABSTRACT
With the advent of increasingly more powerful processing
power and faster disk space accesses, disks have instead fo-
cused on making storage capacity larger and cheaper. This is
unfortunate for file systems, which primary task is to manage
these disks. In the article[2] by Rosenblum and Ousterhout a
novel way to tackle this problem (and others) is presented: by
laying out data sequentially and writing data in segments one
can (potentially) achieve better bandwidth usage than previ-
ous contemporary file systems. Because of its log-like layout,
crash recovery is also faster. This paper is a summary of that
article, which presents log-structured file systems (LSF).

MOTIVATION
Designing and implementing an entirely new file system from
scratch was not something the original authors did out of the
blue, they had clear reasons, based on several observations:

• Technology: processor and memory performance were
evolving at a nearly exponential rate, while the disk was
not. Since the main purpose of a file system is to man-
age this device, a solution to minimize the zenith latency
(caused by re-positioning the read/write head) was needed.

• Workload: most stored files in a standard file system are
small; a costly waste was happening by transfering these
tiny amounts by themselves. This was caused largly due to
the constant seeking through data structures.

• File systems: the Unix FFS[1] was effective at laying cer-
tain data out sequentially (decreasing seek time), however,
it still spread out data structures on the disk, which meant
multiple writes. Also, crash recovery took painstakingly
long on other file systems, a complete traversal of the en-
tire disk was often required (done with fsck in Unix).

DESIGN
To solve the above issues, Rosenblum and Ousterhout devel-
oped the LFS. To minimize latency caused by the mechan-
ical read/write head, all data (including data structures) are
written in a sequential manner, minimizing mechanical re-
positioning. Because small file writes are more common, a
write buffer is employed, its task is to wait until a segment
is full before doing a sequential write (allowing the LFS to
write several small files in one go). Finally, crash recovery is
solved by taking advantage of the log-like (ordered series of
operations) layout on disk, a checkpoint region stores the last
consistent state and queued operations to be performed. This
section explores the design issues and solutions of a LFS.

Figure 1. How the log-like structure conceptually looks like.

Reading and Locating Data Structures
Since all data structures are laid out sequentially, how does a
LFS locate these structures to read/write data? The solution
is to use a checkpoint region, which is the only data structure
(specific to the LFS) that has a fixed address. This region
is used to locate another data structure, the inode map; who’s
task is to transform the given inode index to the actual inode’s
address. Thereafter, the inode will point to the actual data
blocks (just like Unix). While this might seem slow, the inode
map is usually cached in main memory (giving performance
equal to the Unix FFS). See figure 1 above.

Writing and Free-space Management
As mentioned in the design introduction, data is written in
segments and stored in a fast write buffer until full, thereafter
it is written to the first free segment on disk. After a while, no
free segments are going to be available. At this point, several
segments should have been overwritten or deleted, the file
system can then either thread or copy the segments to free
space. Threading is optimal in a segment-by-segment basis,
copying the segment to memory is perfect for defragmenting
it when writing it back to disk (this is the primary way to
free-up memory). This is called segment cleaning.

Cleaning and it’s Policies
The idea behind segment cleaning is quite simple: read
some segments into memory, identify those that have changed
somehow (modified, deleted etc..) by looking at the segment
summary block, write them back in a compressed form. This
will enable the LFS to free disk space and keep the desired,
tightly packed sequential structure. This however, poses sev-
eral policy problems: 1) When should this potentially expen-
sive operation run? 2) How many segments should it take into
memory for cleaning? 3) Which segments should be cleaned?
4) How should the defragmented segments be written back to
disk? See the Sprite LFS section later in this summary.



Crash Recovery
In the event of a system crash, file systems must try to do
damage control by either reverting to a previous consistent
state (before the crash) or try to puzzle together what the sys-
tem was going to do before the crash. This is an issue that
previous file systems had trouble to resolve, a recovery meant
a traversal of the entire file system! In LFS however, since
the last operation is at the end of the log, the last consistent
disk state can be found by looking at the most recent check-
point (two of these are commonly stored). In order to recover
as much data as possible before the crash, a LFS scans seg-
ments after the checkpoint, to see if a summary block has
been created with the next, lost operation. This is called a
roll-forward, and is accomplished by allocating these “lost”
data structures based on information found within the sum-
mary block (not completed, queued, write operations).

IMPLEMENTATION
In addition to designing the general concepts for a LFS, the
authors also implemented a version of it called Sprite LFS for
their network operating system Sprite. It was used for bench-
marking comparisons against Unix FFS in the article[2].

Sprite LFS
The aspects described in the design section above are of a
general LFS, hence, some issues like choice of policies were
left out from that section since it was mostly an implementa-
tion issue. The Sprite LFS implementation starts the cleaning
procedure when the amount of clean segments in the system
falls below a threshold, it then continually cleans until a cer-
tain number of segments are free. Simulations were run by
the authors on these policies and concluded that the first and
second policy (described above) are not very important, the
third and fourth are however, critical for performance.

For these important policies, they found out that a bimodal
segment distribution, where most segments are full and few
are nearly empty was key to high performance. In addition,
by preferring cold segments (segments that don’t change a
lot) as cleaning candidates rather than hot segments, Sprite
LFS achieves better performance than the other tested alter-
natives. This policy, called cost-benefit, allows segments with
low utilization to be cleaned before recently references seg-
ments. Please refer to the original paper[2] for in-depth infor-
mation and several policy simulations.

Results
Several micro-benchmarks[2] were run against the Unix FFS
(specifically, the SunOS) to measure the gains in performance
under optimistic and pessimistic scenarios. In a perfect sce-
nario where no cleaning is involved, the performance for
small file writes was a staggering ten times faster. Even large
file writes gained performance (though not as much, as pre-
dicted). When cleaning is happening, only 70% of the disk
bandwidth is used, which is still a performance gain over the
contemporary Unix FFS’s varying 5-10% bandwidth usage.
See figure 2 for some of the articles benchmark results.

Figure 2. These describe the average small file performance for several
different operations. Statistics and figure taken from the original article.

DISCUSSION
An interesting and well written article is presented by the au-
thors Rosenblum and Ousterhout, it clearly shows the benefits
(at least those shown in the micro-benchmarks) of implement-
ing a log-structured file system compared to other[1] similar
file systems of their time.

Impact
The controversy around the worst case cleaning costs (too
hard to measure) was probably a major factor in the hesitant
adoption of LFS. Still, many popular file systems have taken
concepts from the article; the legacy lives on, on systems:
NetApp’s WAFL, Sun’s ZFL and Linux BTRFS.

Questions
• With the arrival of solid-state drives, mechanical seek time

is non-existent and speed has drastically been improved.
Will there still be a place for a LFS (or similar) when this
type of storage becomes more prevalent?

• Most modern file systems[3] implement a journal, which is
an alternative way to handle recovery. The LFS also has a
similar feature. Which one is more useful? More effective?

• Many modern HDDs employ an on-disk cache (for read-
ing and writing), was this something that was taken into
account when implementing the file system write buffer?
More importantly, would it make a difference?
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