
Monte Carlo Raytracing from Scratch
Martin Estgren <mares480@student.liu.se>
Rasmus Hedin <rashe877@student.liu.se>
Erik S. V. Jansson <erija578@student.liu.se>

Linköping University, Sweden
November 12, 2017

Abstract
A Monte Carlo raytracer is a renderer which pro-
duces photorealistic images after full convergence.
It uses a global illumination model, meaning it gives
optical phenomena like soft shadows, color bleeding
and caustics. This report details the theory and the
practical details necessary to implement one from
scratch along with the photon mapping extension.
After that, we benchmark the raytracer and display
example renders from our raytracer. Finally, we do
a discussion about the further improvements that
can done in the raytracer and give some reflections
on the project. The full C++ source is on GitHub 1.

1https://github.com/CaffeineViking/mcrt

Contents
1 Introduction 2

1.1 Global Illumination 2
1.2 Rendering Equation 2
1.3 Radiosity 3
1.4 Whitted Raytracing 3
1.5 Path Tracing 3
1.6 Photon Mapping 4

2 Theory and Method 4
2.1 Scene Description 4
2.2 Ray-Surface Intersections 5

2.2.1 Parametric Sphere 5
2.2.2 Triangle Polygon 5
2.2.3 Triangle Mesh 5

2.3 Surface Properties 6
2.3.1 Lambertian Model 6
2.3.2 Oren-Nayar Model 6

2.4 Direct Light Contributions 7
2.4.1 Point Light Source 7
2.4.2 Area Light Source 7
2.4.3 Monte Carlo Method 8

2.5 Indirect Light Contributions 8
2.5.1 Specular Reflection 8
2.5.2 Specular Refraction 8
2.5.3 Diffuse Reflection 8
2.5.4 Russian Roulette 8

2.6 Photon Mapping 9
2.6.1 Gathering Photons 9
2.6.2 Radiance Estimate 9

2.7 Anti-Aliasing & Sampling 10

3 Results and Benchmark 11

4 Discussion and Outlook 16

1

mailto:mares480@student.liu.se
mailto:rashe877@student.liu.se
mailto:erija578@student.liu.se

1 Introduction
Several fields of industry use computer graphics to
generate and display synthetic images on a screen;
e.g. the entertainment industry uses raytracers for
rendering animated movies while rasterizers usually
are the technology powering real-time video games.
Of course, it’s also widely used in the engineering
and scientific disciplines for visualizing field data,
which even have their own sub-field called scientific
visualization. Since it is such a wide field, we’ll only
be focusing on the rendering problem: the task of
converting one scene description to an image of it.

Rendering can usually be done in one of two ways,
called the rasterization and raytracing techniques,
or, by using some hybrid of these. Rasterization is
when we geometrically project a scene, composed of
primitives, onto an image plane (our camera) and
then color the pixels based on a local lighting model.
Meaning, objects in a scene are shaded only based
on position, material properties, viewpoint direction,
and light source information; never on other objects.
Rasterization is very fast since there is hardware
dedicated to these operations, and each of these is
independent of each other, in other words, it’s an
embarrassingly parallel problem. Raytracing on the
other hand shoots rays from the pixels in the cam-
era viewplane and finds intersections with geometry
in the scene. These rays bounce around the scene by
specular reflection or specular transmission, until it
finds a diffuse surface, which then absorbs it. It’s a
process by recursion, which approximates irradiance
falling onto a pixel. Since it takes into account other
objects, it’s a technique which gives global illumi-
nation. Unfortunately, raytracing doesn’t have full
hardware support, but is still fast since it’s also an
embarrassingly parallel task (done for each sample).
In this report we’ll describe all the party tricks

we’ve used to implement our Monte Carlo raytracer
from scratch. It simulates all light transport effects
for perfectly diffuse and perfectly specular surfaces.
We’ve also implemented photon mapping to speed
up our convergence rate for higher quality caustics.
Arbitrary triangle meshes can also be rendered and
use bounding volumes to ignore low-effort intersec-
tion tests. Lastly, we also support quadric geometry.
All of our scene is specified by using a JSON format.

We continue Section 1 by giving a brief overview
of the field and introducing desirable properties for
achieving photorealism with a model describing it.

We then take a excursion through the most notable
rendering schemes to solve the rendering equation.
In Section 2 we break apart our raytracer bit-by-
bit and explain each part in turn, along with any
relevant theory necessary. We then play around with
our raytracer’s knobs in Section 3 to see if they
affect the final render, and more importantly, the
rendering time. We’ll try to see if there is a balanced
trade-off between render quality and speed. After
all this, Section 4 concludes the report by critically
looking at our implementation and results and also
giving insight into what could be improved further.

(a) local illumination (b) global illumination

Figure 1: Two renders of the famous Cornell box in
our raytracer; comparing both illumination models.

1.1 Global Illumination
A rendering technique is deemed to be photorealistic
if, after full convergance, it exactly mimics reality.
One of the most important ingredients for achieving
photorealism is global illumination. We can compare
local illumination and global illumination by looking
at Figure 1. Notice that GI (global illumination) has
color bleeding, hard and soft shadows and caustics.
These phenomena are not possible in a local model
without “hacks” like the shadow mapping technique.

1.2 Rendering Equation
A model describing most light transport phenomena
is the rendering equation, shown below, presented
by James Kajiya [7]. All of the rendering schemes
are attempts at solving it. We present in the coming
sections the most well known rendering techniques.

Lo(~x, ω̂o) = Le(~x, ω̂o) +

+
∫

Ω
Li(~x, ω̂i)fr(~x, ω̂i, ω̂o)(n̂x · ω̂i) dω̂i

2

1.3 Radiosity
Radiosity for computer graphics assumes all sur-
faces are perfectly diffuse patches (e.g. triangles),
and builds on the concept of finding the radiance
that is transferred between patches in the scene us-
ing an iterative process. Each iteration solves the
equation below by reflecting radiance for each patch:

Bi = Ei + ρi

n∑
j=1

FijBj ,

where Bi is the radiosity of patch i, Ei the emitted
radiosity by i, ρi is the surface reflectivity of i, and
the sum defines the radiance falling onto i between
each patch in the scene and the patch i, depending
on the form-factor Fij (geometric term) of i and j.

Figure 2: Shows how the radiosity technique spreads
the radiance in each iteration (render by H. Elias).

Iterating on the above equations, a discrete ap-
proximation of the rendering equation is achieved
for perfect Lambertian surfaces as the patch size
goes infinitesimal and the iterations tends to infin-
ity (but there needs to be some cutoff point, other-
wise numerical errors might start appearing). You
can see a radiosity-based renderer iterate through
a scene in Figure 2. Some advantages of radiosity
over GI techniques that takes into account specular
light is that it calculates the radiosity of the full
scene and not just based on the camera viewport,
making it useful when baking light-maps with the
scene. It’s a spin-off of the heat transfer equations in
thermodynamics into rendering by Goral et al. [5].

1.4 Whitted Raytracing
In the Whitted [13] ray tracing method initial rays
are emitted from the camera into the scene. The
rays will intersect with objects and new reflective
and/or refractive rays are spawned. In this method
it is assumed that we only have perfect reflections
and refractions. The direction of a refracted ray
is computed with Snell’s law given the refractive
indices of the materials at the ray intersection point.

Reflecting and refracting rays will build up a tree
of rays. When all rays have terminated (i.e. hit a
diffuse surface) the radiance at each intersection is
computed from the leaf nodes back up to the root
node (the camera). The radiance from the child
rays of an intersection point contribute to the total
radiance leaving each intersection point. Shadow
rays are sent from each of these points to the light
sources, to know if the point is in shadow. If the
shadow ray reaches a source of light then it’s not in
shadow and the light therefore contributes to the
total radiance. Figure 3 (a) is being rendered by it.

(a) Whitted-ish raytracing (b) Monte Carlo raytracing

Figure 3: Renders of the scene in Section 2.1 using
our raytracer in the early and later progress stages.

1.5 Path Tracing
The path tracing method works in a similar way to
Whitted raytracing, but the reflections and refrac-
tions may not always perfect. Instead, when a ray
intersects with an object it will be reflected in a
random direction originating from the hemisphere
at the intersection point. These rays are recursively
reflected until they intersect with a light source. But
since some rays never hit a light source another con-
dition to terminate is needed. The solution is called
Russian roulette, where rays have a probability of
being absorbed at the intersection point. This gives
the technique an unbiased result. A tree will be built
recursively just as before, adding contribution from
the child nodes and from the light sources (which
may have an area now) with a local lighting model.
This is a method that needs many samples to

converge, and thus uses Monte Carlo integration;
making the path tracing technique a Monte Carlo
raytracer. Figure 3 (b) shows a render of a scene
using our Monte Carlo raytracer; we have more in-
teresting light phenomena than Whitted raytracing.

3

1.6 Photon Mapping
One of the main problems with path tracing is that
it usually takes very long to converge to a noise-
less image. To speed up the raytrace convergence,
H. Jensen proposed an algorithm where rays with
low importance are approximated using a spatial
map which describe how light sources deposit flux in
the scene. These data-structures are called photon
maps [6] and significantly speed up convergence of a
typical path tracer by requiring a bit more memory.

(a) direct light photon map (b) possible raytrace result

Figure 4: Here the flux coming from the light source
is distributed as seen in (a) before we do raytracing.

Photon mapping is done in two passes. The
first pass is done before the path tracer as a pre-
processing step where photons are emitted from
light sources and bounced around the scene in a
way similar to the typical path tracer. These pho-
tons are usually stored in a balanced kd-tree when-
ever they hit a diffuse surface. The second pass is
done in conjunction with the path tracer where rays
with low importance are approximated by photons
stored around the terminating scene-intersection.
The number of photons to consider is either calcu-
lated by a bounding sphere of fixed size or a sphere
expanded until it encompasses a fixed number of
photons. These photons are then used to approxi-
mate radiance at the intersection point. We’ll see
later in the report that our implementation uses the
“fixed sphere radiance estimation” approach for this.

In some cases a higher resolution secondary pho-
ton map is used to show caustics effects since these
are very expensive to do in regular path tracing. In
this case, photons are only emitted towards specular
objects in the scene and in much greater numbers
compared to the regular photon map. This enables
one to get detailed caustic effects cheaply and fast.

2 Theory and Method
Raytracing attempts to find irradiance falling onto
each pixel in the image plane EΠ. For each pixel
at world position ~oij on EΠ we send off rays origi-
nating at E, the eye origin. These importance rays
will hit and bounce around the scene described in
Section 2.1 according to the theory at Section 2.2.
Depending on the surface properties, we’ll need to
consider the radiance reflectance rate, fr(~x, ω̂i, ω̂o),
in Section 2.3, for evaluating the radiance at e.g.
the point ~p. The light contributions for ~p come in
two forms: direct light (e.g. the light source L) and
indirect light (e.g. the diffuse surface D). These are
described in Sections 2.4 and 2.5. To reduce noise,
and converge faster, we use photon maps in Part 2.6,
to approximate the direct light contributions. Lastly,
we may get aliasing, which we deal with in Part 2.7.

2.1 Scene Description
Below is an overview of the scene we’ll be using to
display the results and do our benchmarking. All
walls are Lambertian reflectors with different colors,
while the floor and roof are white. An area light
source with 4 triangles exists, it’s white, on the roof.
There exists four primitives in the scene, an or-

ange teapot mesh (4) with a Lambertian BRDF, a
white sphere (2) with Oren-Nayar BRDF σ′ = 0.1,
a perfectly reflective sphere in (3) and a perfectly
refractive sphere in (1) with a refraction index 1.5.

4

2.2 Ray-Surface Intersections
The scene can be constructed using a number of
different geometric surfaces and requires different
intersection test for each surface type. Common for
them all is that the incoming ray is defined on the
parametric formula ~o+ td̂ where ~o ∈ R3 denotes the
origin of the ray, t ∈ R specifies a distance from the
origin, and d̂ ∈ R3 indicates the direction of the ray.

2.2.1 Parametric Sphere

Spherical objects are defined as a vector ~o ∈ R3

which denotes the origin of the sphere, and a scalar r
as the radius of the sphere. Sphere-ray intersections
are done using a geometric solution to the following:

~L = ~osphere − ~oray
tca = ~L · d̂ray

if tca < 0, there’s no intersection between ray and
sphere. Otherwise look for intersection points using:

d2 = L · L− tca · tca

if d2 > r2, there’s not intersection, otherwise:

thc =
√
r2 − d2

t0 = tca − thc
t1 = tca + thc

tmin = min(t0, t1)

where tmin is the distance from ~oray to the closest
intersection point on the sphere. If tmin < 0 we
don’t have an intersection as well. The intersection
point is calculated as ~i = ~oray + tmind̂ray − ~osphere
and the surface normal as n̂ = ||~i− ~osphere||.

2.2.2 Triangle Polygon

Intersections between triangles and rays are com-
puted using the Möller-Trumbore [9] algorithm,
which allow for intersection tests without having
to compute plane containing the triangle. First a
local coordinate system for the triangle is computed
using the corner vertices ~v1, ~v2, and ~v3 of the form:

ê1 = ~v2 − ~v1

ê2 = ~v3 − ~v1

the surface normal is extracted as n̂ = ê1 × ê2,
we check if the ray travels parallel with the triangle
surface by p̂ = ˆdray × ê2, and if the determinant
d = ê1 · p̂, d = 0, the ray does not intersect the
triangle. Otherwise the intersection test continues:

~t = ~oray − ~v1

~q = ~t× ê1

u = ~t · p̂ ∗ d−1

v = d̂ray · ~q ∗ d−1

if the two conditions

u < 0 or u > 1
v < 0 or u+ v > 1

don’t hold, we have an intersection and the distance
t the ray has to travel to the intersection point can
be calculated as ~e2 · ~q ∗ d−1. The triangle normal is
simply n̂ = ~e1 × ~e2, if n̂ · r̂ray > 1, o.w. n̂ = ~e2 × ~e1.

2.2.3 Triangle Mesh

To speed up the intersection test for geometries us-
ing multiple triangles we use a hierarchical geomet-
ric representation where the geometry of interest is
encapsulated within a bounding sphere, this speeds
up the test since only the triangles are taken into ac-
count if we already know that the ray will intersect
the bounding sphere.

The bounding sphere is calculated by picking the
smallest and largest vertices from the vertex set V

~vmin = arg min
~v∈V

(~v)

~vmax = arg max
~v∈V

(~v)

and defining the bounding sphere as:

radius = ||~vmin − ~vmax||2
~origin = ~vmax − ~vmin

2

5

2.3 Surface Properties
After hitting a diffuse surface with normal n̂ coming
from a ray direction ω̂i, we need to find the reflected
radiance going towards ω̂o. This is affected by the
bidirectional reflectance distribution function, fr, of
the surface. It’s used to model the ratio of reflected
radiance leaving the surface towards ω̂o with respect
to the irradiance arriving from the direction ω̂i. The
first definition given by F. E. Nicodemos [10] shows:

fr(~x, ω̂i, ω̂o) = dLr(~x, ω̂o)
Li(~x, ω̂i)(n̂ · ω̂i)dω̂i

.

There are several surface reflectance models; we’ll
only describe the Lambertian and the Oren-Nayar
reflectance models, since those are in our raytracer.

2.3.1 Lambertian Model

Assumes the surface reflects radiance isotropically,
meaning it reflects radiance equally in all directions.
It was introduced by J. H. Lambert [8] in 1760, and
realistically models perfectly diffuse surfaces which
are free of imperfections (i.e. there is no roughness).

Figure 5: Diffuse “Lambertian” surface.

Since it doesn’t depend on the incoming/outgoing
directions, the value of fr is constant in all directions
within the hemisphere. This gives us the BRDF in
Equation (1). Now, usually you see the factor n̂ · ω̂i
here as well, but we’ve chosen to not include it since
it’ll be appearing in the rendering equation anyway.

fr(~x, ω̂i, ω̂o) = ρ

π
, (1)

where ρ is the albedo of the diffuse surface D and π
is the normalization factor for energy conservation.
Albedo can hand-wavingly be interpreted as “color”.

2.3.2 Oren-Nayar Model

Unfortunately, while the Lambertian model might
be good for some surface types, it’s inappropriate for
others, such as concrete, ceramic and cloth. Which
is a shame, since it’s an simple and intuitive model.

Surfaces which are diffuse and have rough texture
can be accurately modeled with a Oren-Nayar [11]
reflection model. It’s based on the microfacet model
introduced by Torrance-Sparrow [12], that assumes
a surface is composed of infinitesimally small, flat,
Lambertian reflectors (as shown in the last section).
An intuitive sketch of such a surface can be seen
in Figure 6, where the V-shaped microfacets are
actually supposed to be infinitesimally small sized.

Figure 6: Diffuse “Oren-Nayar” surface.

Deriving Equation (2) is outside the scope of this
paper, so if you’re interested, consult the original
paper. Note that this is the qualitative Oren-Nayar
definition, and will therefore fail energy conservation
laws when the roughness parameter is set σ > 0.97.

fr(~x, ω̂i, ω̂o) = ρ

π
· (A+ sinα · tan β · γ ·B) ,

A = 1− 0.5 σ2

σ2 + 0.33 , B = 0.45 σ2

σ2 + 0.09 ,

α = max {θi, θo} , β = min {θi, θo} ,
γ = max {0, φi − φo} ,

(2)

where θ is the inclination and φ the azimuth of ω̂. By
changing σ we can control the surfaces’ roughness.
Notice that this BRDF depends on the ray’s angle,
and is therefore anisotropic. Implementing this isn’t
that straightforward since our raytracer has ω̂’s that
aren’t easily decomposable into the form ω̂ = (θ, φ).
It boils down to doing projections onto the surface
plane. We can get a vector parallel to the plane with
p̂ = ω̂i× ω̂o and then q̂ = p̂× n̂. By projecting down
ω̂i onto q̂ with ω̂i‖q̂, we get θ = ω̂i · q̂ , φ = ω̂i‖q̂ · q̂.

6

Because the qualitative Oren-Nayar calculations
have quite a few expensive operations, we’ve chosen
to implement Yasuhiro Fujii’s [4] Oren-Nayar vari-
ant. It doesn’t require trigonometric functions, and
gives empirically almost indistinguishable results to
O-N. Like regular Oren-Nayar, it suffers from not
following energy conservation laws when σ′ > 0.97.

Actually, experimentally, Y. Fujii has found that
his proposed approach matches regular Oren-Nayar
better than the qualitative Oren-Nayar within [11].

fr(~x, ω̂i, ω̂o) = ρ ·
(
A′ + s

t
·B′

)
,

A′ = 1
π +

(
π
2 −

2
3
)
σ′
, B′ = σ′

π +
(
π
2 −

2
3
)
σ′
,

t =
{

1 if s ≤ 0
max {n̂ · ω̂i, n̂ · ω̂o} otherwise

,

s = ω̂i · ω̂o − (n̂ · ω̂i)(n̂ · ω̂o) .

(3)

Unlike qualitative Oren-Nayar, the above BRDF
is a breeze to evaluate, for both the hardware and
the programmer (who likes projecting stuff anyway).

Looking at Figure 7 we see results returned from
our raytracer. We should make a couple of interest-
ing observations. Notice that Oren-Nayar reflectors
with σ′ = 0 are essentially the same as Lambertian
reflectors. Which makes sense, since σ′ = 0 means
the surface has no roughness (i.e. perfectly diffuse).

Figure 7: Spheres rendered using our raytracer with
different roughness values, σ′, for the Oren-Nayars.

To wrap things up, when we hit a diffuse surface,
we wish to know the ratio of radiance that will leave
the surface. For this we need to choose between the
Lambertian and Oren-Nayar model to calculate fr.
Each surface in our scene defs. it’s fr model to use.

2.4 Direct Light Contributions
Most importance rays that are sent from the camera
into the scene never hit a light source. Therefore,
the direct light from the light sources to an intersec-
tion point needs to contribute to the total radiance
at the point. This is computed with shadow rays,
which are sent from each intersection point to the
sources of light. The shadow rays will provide light
contributions to the radiance at the ray intersection
points. To determine if the intersection point lies in
shadow, a visbility test is performed. Transparent
objects are obviously ignored by the visibility test.

2.4.1 Point Light Source

The shadow ray S2 = x − y from an intersection
point y to a point light source position x is launched.
If it does not hit any object, it will pass the visibility
test, and will therefore contribute radiance to the
surface. The Lambertian cosine falloff, based on the
angle θS2 between the normal N and S2, is applied,
as can be seen in the equation below.

L(y → −Ψ1) = fr(y, ωS2 ,−Ψ1)L(y ← S2)cosθS2

Figure 8: Shadow ray toward point light.

2.4.2 Area Light Source

The direct light from an area light source needs to
be approximated for each intersection point. This is
done with a Monte-Carlo estimator < LD > using
M shadow rays, as will be explained in the next
section. The light source is a triangle with corners

7

v0, v1, and v2 and with area A = 0.5||(v1 − v0)×
(v2−v0)||. To get the shadow rays we need to pick
random points q on the light source uniformly with
PDF p(q) = 1

A . This is done by drawing two random
numbers u, v until u+ v < 1 and building the point
q with barycentric coordinates q = (1− u− v)v0 +
uv1 + vv2. Repeat this until we have M points.

2.4.3 Monte Carlo Method

< LD >= AL0

M

M∑
i=1

frV (x, q)G(x, qi)

G(x, q) = cosαcosβ/d2 is the geometric term where
d is the length of the shadow ray and α, β are
the inclination angles to the surface normal at the
start- and endpoint. V (x, qi) is the visibility func-
tion which is 1 if no object is in the way and 0 oth-
erwise. Thus, only unblocked shadow rays will con-
tribute to the estimate giving a soft shadow. Since
the light source is a Lambertian emitter L0 is emit-
ted for all points and directions of the light source.

2.5 Indirect Light Contributions
When rays are emitted from the camera they will
intersect with surfaces. At the intersections the rays
will either terminate or spawn new rays depending
on the surface material. By following the path of the
ray we build up a tree with intersections as nodes
connected by rays. The child nodes will contribute
radiance to the parent nodes which gives indirect
light, i.e. light reflected at least once since it left the
light source. It’s usually split it into three types:

2.5.1 Specular Reflection

If a ray hits a perfect specular surface a new ray
will always spawn. The direction of the new ray is
determined by the perfect specular reflection law.
The direction of the new ray ~R = ~I − 2(~I · ~N) ~N
where ~I is the incoming ray and ~N is the normal.

2.5.2 Specular Refraction

If a ray hits a perfectly refractive surface, i.e. a
transparent object, a new ray is spawned that en-
ters the object. The refractive ray ~T is computed
with the perfect refraction law and the angle to the
surface normal is computed with Snell’s law.

~T = n1
n2

~I+ ~N

(
− n1

n2
(~N · ~I) −

√
1 − [n1

n2
]2[1 − (~N · ~I)2]

)
When a ray is moving between media of different

refractive indices we might both reflect and refract.
The Fresnel equations are used to determine the
distribution of the radiance over the refracted and
reflected rays.

Rs =
[
n1cosθ1 − n2

√
1− ([n1/n2]sinθ1)2

n1cosθ1 + n2
√

1− ([n1/n2]sinθ1)2

]2

Rp =
[
n2
√

1− ([n1/n2]sinθ1)2 − n1cosθ1

n2
√

1− ([n1/n2]sinθ1)2 + n1cosθ1

]2

The total reflection coefficient becomes

kr = (Rs +Rp)/2

The radiance of the parent node to the refracted
and reflected ray is computed as

L = Rkr + T (1− kr)

2.5.3 Diffuse Reflection

As described in 2.3 two diffuse surfaces are imple-
mented in the project; Lambertian and Oren-Nayar.
When these surfaces are intersected by a ray we
need to determine the direction of the reflected ray.
For specular surfaces the ray was reflected/refracted
perfectly, but for diffuse surfaces this is not the case.
Instead, a random azimuth angle φi and inclination
angle θi is picked in the hemisphere. We pick two
random values u, v ∈ [0, 1) and compute azimuth
φi = 2πu and inclination θi = cos−1(

√
v). The re-

flected ray will contribute to the radiance at the
intersection giving indirect light.
In order to not get a biased result an unbiased

termination condition is required. This is achieved
with russian roulette 2.5.4 that determines if a ray
should be terminated.

2.5.4 Russian Roulette

In order to achieve a unbiased result russian roulette
is used to get an unbiased termination condition.

8

The idea is to select a reflection probability P for an
intersection of a ray. This probability is connected
to the surface properties. The radiance at a inter-
section point is approximated with a Monte-Carlo
scheme using one ray.

L(x→ ωout) = πfr(x, ωin, ωout)L(x← ωin)

A new ray is spawned at the intersection point
with probability P and the ray is terminated with
probability (1−P). In order to remove the bias the
following equation is used.

L(x→ ωout) = π

P
fr(x, ωin, ωout)L(x← ωin)

To determine if a ray should be terminated the
azimuth angle of the reflected ray is modified to
φi = (2π/P)u where u is a random variable 0 ≤
u ≤ 1. If φi > 2π the ray is terminated and a new
ray is spawned if 0 ≤ φi ≤ 2π.

2.6 Photon Mapping
Photon mapping is a technique where photons are
distributed within the scene and used during the
path tracing render pass. This is done in order to
provide an approximative method for radiance sam-
pling during the path tracing step. Each photon
represents a tiny packet of flux which provides in-
formation that helps us to reduce the number of
reflection and shadow rays during the path tracing
pass.

2.6.1 Gathering Photons

Photons are propagated from the light sources in
the scene and bounced around the geometry similar
to how rays are emitted through the camera view-
plane and reflected/refracted based on the material
properties of surfaces. In this implementation the
main difference between ray and photon propaga-
tion is that the photons always terminate on the
first diffuse surface which it intersects. Terminated
photons are stored in a balanced kd-tree to allow
for efficient photon lookup during the radiance esti-
mation.

In this implementation a fixed number of photons
are defined during the pre-rendering step P . Each

light source is assigned a number of photons based
on the size of the light source.
First the total area for all light sources in the

scene is calculated:

A =
∑
l∈L

area(l)

where L is the set of all light sources. To get the
number of photons a specific light source l will emit,
the contribution of l towards the total emission area
is used with the total number of photons:

pl = P

A
area(l)

which results in the number of photons a given light
source should emit into the scene. Each photons’
outgoing direction is cosine-weighted and the posi-
tion uniformly sampled from the area of the light
source.

2.6.2 Radiance Estimate

In this project, the computation of the direct light
is replaced by an estimation based on the photon
map. To estimate the radiance at point x all photons
within a sphere with radius r. A fix sized sphere is
used in this project. Some condition needs to be
fulfilled in order estimate the radiance with photon
mapping. If these conditions is not met the Monte-
Carlo scheme will be used for the approximation.
Photon mapping will not be used if the sphere con-
tains shadow photons, or if the sphere contains few
photons.

L(x→ ωout) =
M∑
i=1

fr(x, ωin,i, ωout)
φ(xi ← ωin,i)

πr2

Areas with low photon density may give a blurry
result. Therefore, a cone-filter is applied to the es-
timate. This is done by giving a weight wp to each
photon based on the distance dp between the point
x and photon p.

wp = max(0, 1− d/(kr))

The filter is normalized by 1− 2
3k giving the final

equation.

L(x→ ωout) =
M∑
i=1

fr(x, ωin,i, ωout)
φ(xi ← ωin,i)wp

(1− 2
3k)πr2

9

2.7 Anti-Aliasing & Sampling
Since we’re sampling irradiance falling onto pixels,
we’re converting from something that’s continuous
(i.e. the scene description) to something discrete (i.e.
the pixels on a screen). If we’re only to take one
sample per pixel (SPP) we’ll most likely get multiple
aliasing artifacts (usually “jaggies” on most edges).

We’re undersampling, in signal processing theory.
To perfectly eliminate aliasing, we’d need to fetch
samples at the Nyquist rate (or higher) and filter it.
Unfortunately, that generally isn’t possible, and is
usually also overkill in computer graphics. Instead
we use an approximation, called supersampling, that
sends importance rays from sub-pixels, and then
takes the weighted average of them. Let pij be the
final pixel color (unknown) at location (i, j), and
let Sij = {s1, s2, ...} be sub-pixel colors (known) we
have found when raytracing. We’ll estimate pij by:

p̂ij = 1
|Sij |

∑
∀sk

sk .

Below you’ll find an example sketch, using 4 SPP.
Another important use-case of supersampling which
we’ve failed to mention explicitly is that it replaces
Monte Carlo integration over the hemisphere for
the indirect diffuse light component. We’ve already
mentioned that we do Monte Carlo integration for
direct area light sources, but in this case the Monte
Carlo integration we’re doing is implicit. We do this
by accumulating all irradiance falling onto the pixels
and then uses the above “Monte Carlo” estimator.
Supersampling solves two big issues with one stone:
anti-aliasing and also the Monte Carlo integration.

Figure 9: Intuition for supersampling anti-aliasing
technique. Average the samples s1, s2, s3, s4 to find
the pixel’s expected color. Usually not four samples.

(a) 1x (b) 4x (c) 16x

Figure 10: Effects of different supersampling levels
for 64x64 render of the Utah teapot in our raytracer.

Sometimes the locations where we evaluate our
sub-pixels makes a difference in the final render.
If the scene has of e.g. a texture which is of high-
frequency (almost at the sub-pixel level) and has
a regular pattern, then some details might be lost
in the render process. It’s largely affected by the
supersampling pattern that we use to choose the
sub-pixel locations which are going to be raytraced.
We’ve implemented three patterns, as can be seen
in Figure 11. The grid samples at regular intervals
inside the pixel with a step size ∆p. Randomly tak-
ing samples inside the pixel is also a valid strategy,
leading to noisier, but unbiased results. Finally we
have also implemented a Gaussian sampling pattern,
with distribution X ∼ N (µ, σ2) around the center.

From the four vertices {v1, v2, v3, v4} of EΠ we
build a coordinate system: ~x = v2 − v1, ~y = v4 − v1
to calculate the next sub-pixel positions (based on
the pattern we use) we’re going to use to send rays.

Figure 11: Visualization of supersampling patterns
we’ve implemented: grid, random, and the gaussian.
Another common technique is jittering (not shown).

As the last step, we need to be aware that we’re
storing irradiance values (using double precision) in
our pixels. They are in the so called sampling space,
but since we’re going to be writing down the render
to an image (integer values), we need to convert
them from sample space to image space. We do this
by p̂ij ÷max {p̂ij}, ∀p̂ij , scaling this down to [0, 1].

10

3 Results and Benchmark
After describing our Monte Carlo raytracer we now
show some example renders of the scene presented
earlier in the paper, and point out the optical phe-
nomena that arise. This raytracer has many parame-
ters that can be toggled, and in order to identify the
primary knobs that contribute to a good looking im-
age, and those that only increase render time, we’ve
measured the render time by changing parameters.

Final Render
Given unconstrained time, the Monte Carlo ray-
tracer will converge to a realistic image, and will be
noise-free. After 1024 samples the image below is
produced, and gives pretty convincing results, with
relatively little noticeable noise. It was rendered
using an Intel Core i7 860 @ 2.8 GHz and
using 8 GiB of on-board main memory. The ray-
tracer supports OpenMP, so it was rendered in 8-way
parallel, one for each hardware thread (of 4 cores).

Figure 12: High-resolution render of the scene at
1024x1024, 1024 SPP, 1 shadow ray and 7 bounces.
Render time taken was ≈ 133 minutes & 31 seconds.

The figure above contains all optical effects re-
quired for photorealism. In the coming sections each
of these effects will be shown and described in detail.

Reflection

By zooming into Figure 12 the mirror sphere on the
right can be analyzed. We can see that we have a
perfectly reflective surface, where the other surfaces
in the scene, which aren’t visible in the original
viewplane directly, can be observed indirectly. We
can see in the other figures that this can be applied
recursively, as long as it doesn’t go over ray depth.

Refraction

Below is a sphere with perfectly refractive material
using an refractive index similar to glass. The con-
vex lens which the sphere creates causes a mirrored
refracted projection. Some Fresnel effects can be ob-
served in the sphere, i.e, we get some reflections at
grazing angles. Indirect refraction of other surfaces.

11

Caustics

Caustics are usually hard to reproduce with a
monte-carlo ray tracer, but given enough time to
converge, there is no limitation in the method itself.
In the image below we can observe caustics created
by refracting direct light through the sphere, as well
as those created by reflecting direct light through
the mirror and then through the sphere. One pos-
sible cause for the caustics being generated under-
neath the sphere is the self-refraction inside the
sphere. It’s also able to see the caustics through the
reflection on the mirror sphere. Caustics are caused
because the sphere acts as a lens, concentracing
light/radiance into a smaller area than normal.

Color Bleeding

As can be seen in the image of the white Oren-
Nayar sphere, it has received indirect illumination
from the red wall and the green wall. This happens
because the direct light of diffuse surfaces can be re-
flected multiple times, and this causes the radiance
to be a mix of all intersected surfaces. In the mirror
reflection of this sphere, there is also contributions
from the blue wall via indirect illumination. This is
one of the effects which are not possible with regu-
lar Whitted raytracing and is usually an important
effect of global illumination and gives photorealism.
You can also see this on the walls and teapot.

Photon Map Visualization

Below is a direct visualization of the photon map
created by plotting each photon in the direct light
photon map. We’ve chosen not to plot the scene and
instead use the Cornell box since it’s easier to see
what’s happening. The white points are regular pho-
tons carrying some flux in them, naturally each of
these should carry only a little flux, so in reality they
should be almost black (they are white for visualiza-
tion purposes only). The black photons represent
shadow photons. As can be seen, only diffuse sur-
faces create photons when intersected, and if there
were any specular surfaces in the scene, they would
only reflect or refract the photons’ paths, never store
them there. This was made by using plot3d in R
library rgl (see this in utils/photon-map.r).

12

Parameter Benchmarks
In this section different parameter configurations
will be tested to examine the visual and compu-
tational cost. All measurements were made on
the same hardware configuration, an Intel(R)
Core(TM) i5-4250U CPU @ 1.30GHz with 2
cores and 4 hardware threads. The system has 16
GiB of memory. We parallelize it 4-way in OpenMP.
The table below shows the parameter values for

our baseline parameter configuration on which we’ll
perform pure Monte Carlo ray tracing, which will
result in a photorealistic image given enough com-
putation time. Figure 13 gives the render of these.

Parameter Default Value
Resolution 512x512
Shadow Rays 1
Ray Bounces 7
Sampling Density 49 SPP
Photon Mapping No
Photon Amount 1 million
Estimation Radius 0.1 units
Render Time 2 min 42 sec

Figure 13: Render of the scene 512x512 at 49 sam-
ples per pixel, 1 shadow ray and 7 max ray bounces.

Shadow Rays

This section covers how the number of shadow rays
affects the result in comparison with the default
parameter configuration.

Shadow Rays Rendered Time Taken
1 See Fig. 13 2 min 42 sec
4 See Fig. 14 7 min 26 sec
8 See Fig. 15 13 min 31 sec

Figure 14: Render of the scene 512x512 at 49 sam-
ples per pixel, 4 shadow rays and 7 max ray bounces.

Figure 15: Render of the scene 512x512 at 49 sam-
ples per pixel, 8 shadow rays and 7 max ray bounces.

Figure 13-15 have been rendered with the same
resolution and samples but with increasing amount
of shadow rays. By comparing the images we can see
that the number of shadow rays does not affect the
result. Since we sample each pixel multiple times

13

we implicitly get multiple shadow rays. Therefore,
one shadow ray is enough to get a good result and
the rendering time decreases as in the table above.

Ray-depth

The ray-depth parameter affects how many bounces
each ray can do in the scene, with a value of 1 no
reflections/refractions will occur.

Ray Bounces Rendered Time Taken
1 See Fig. 16 51.4 sec
4 See Fig. 17 2 min 9 sec
7 See Fig. 13 2 min 42 sec

Figure 16: Render of the scene 512x512 at 49 sam-
ples per pixel, 1 shadow rays and 1 max ray bounces.

The scene becomes much darker since no indirect
illumination is present in the scene. There is also no
reflection and refraction present, since those count
as ray bounces as well. This is a great image for
visualizing the difference between the Oren-Nayar
and the Lambertian surface. It might not be notice-
able, but the falloff around the Oren-Nayar reflector
is a less pronounced than that of the Lambertian
emitter because the roughness of it is higher.

In Figure 17 we can see that indirect light seems
to be arriving at the points we sample, but the reflec-
tions of high depth return black. This is something
which doesn’t happen in the baseline configuration.

Figure 17: Render of the scene 512x512 at 49 sam-
ples per pixel, 1 shadow rays and 4 max ray bounces.

Sampling Density

The sampling density specifies how many samples
will be taken for each pixel on the screen. Since it’s
something that increases with O(n2), it’s expensive.

Supersamples Rendered Time Taken
16 See Fig. 18 50.3 sec
49 See Fig. 13 2 min 42 sec
196 See Fig. 19 10 min 24 sec

Figure 18: Render of the scene 512x512 at 16 sam-
ples per pixel, 1 shadow ray and 7 max ray bounces.

14

In the figure above, the scene initially seems very
dark. This is expected, since not enough indirect
illumination has been spread through the scene yet.
It also has to do with how our raytracer does nor-
malization of the radiance in each pixel to integer
colors, something like tone mapping might fix this.

Figure 19: Render of the scene 512x512 at 196 sam-
ples per pixel, 1 shadow ray and 7 max ray bounces.

As expected the final results give less noise with
more samples but at the cost of additional compu-
tation time. This also reduces aliasing and thus the
jaggies which were presented earlier. The aliasing
near the sources of light is especially bad at the
start because it doesn’t fall off as smoothly as the
other surfaces in the scene. That is, it’s a very sharp
change in color, and it thus takes a lot of samples
to blend it with the nearby colors.

Photon Mapping

The following table shows how using a photon map
affects the visual and computational results of the
render with a fixed number of photons but different
radiance estimation bound. This photon map imple-
mentation does not use k-nn photon gathering but
instead uses a fixed size sphere around each point
of interest.

Radius Rendered Time Taken
0.1 See Fig. 20 51.5 s
0.7 See Fig. 21 129.6 s

Figure 20: Render of the scene 512x512 at 49 sam-
ples per pixel, 8 shadow rays and 7 max ray bounces
using a photon map with 1 000 000 photons and a
radiance estimation radius of 0.1.

Stray shadow-photons causes the result to look
spotty since the photon map and path tracer doesn’t
agree with the amount of radiance for a given point.

Figure 21: Render of the scene 512x512 at 49 sam-
ples per pixel, 8 shadow rays and 7 max ray bounces
using a photon map with 1 000 000 photons and a
radiance estimation radius of 0.7.

With a larger sphere of interest the result takes
significantly longer to compute but the result
doesn’t become as spotty as the previous config-
uration.

15

4 Discussion and Outlook
A couple of interesting findings can be observed
when looking closely at the results. Some of these
pertain to the implementation details, while others
are indirectly caused by how the path tracer inter-
acts with the raytracer’s photon mapping extension.
The path tracer produces visible and crisp caus-

tics without significant extra computational cost.
This result is interesting since caustics generally are
computationally expensive in regular path tracing.
We believe that this could be the effect of us hav-
ing very simple geometry in the scene, and how the
objects are placed in it. To improve the caustics in
the general case, a caustic photon map can be used
instead, as proposed by Jensen [6]. This would have
the effect of speeding-up rendering while allowing
for a reduced resolution of the global photon map.
Counter-intuitively, the photon map causes the

render time to increase. Our theory is that this is
caused by the fact that the path tracer only uses
one shadow ray and doesn’t estimate indirect light.
Meaning, the amount of work being done in the
direct light calculations of the path tracer aren’t
enough to motivate the photon map optimization.
The photon map still uses an expensive nearest
neighbor look-up. This result could be counter-acted
by reducing the look-up time of the photon map or
by removing supersampling (meaning we have to in-
crease the amount of shadow ray samples as well).
“Spotty” regions can be observed when looking

at the rendered image for the photon map with a
small estimation radius. These regions are caused
by stray shadow photons from the photons reflected
in the scene. A possible way to improve the result
would be to increase the size of the estimation ra-
dius or thresholding how many shadow photons an
estimation region can contain before shadow rays
are used. However, this increases computation time.
The number of shadow rays does not affect the

result significantly since the renderer uses supersam-
pling, effectively doing the necessary Monte Carlo
integration of the area in the camera. To increase
the relevance of the shadow ray parameter, super-
sampling could be disabled or reduced to a degree.
While the monte carlo raytracer already gives

pretty photorealistic results, it is not perfect. Below
we’ll provide an outline of potential improvements.

Both BRDFs in mcrt are for diffuse surfaces,
but there are other BRDFs for specular surfaces as

well, such as the Torrance-Sparrow [12] and Cook-
Torrance [3] models. It would be interesting to inte-
grate these into our renderer too for completeness.
Also, in the raytracer, all meshes are wrapped

around a sphere for eliminating low-effort intersec-
tion tests. Usually, for meshes with many more tri-
angles, it’s insufficient, and causes long render times.
Instead, a bounding volume hierarchy should have
been used, potentially reducing it to O(logn) tests.

In our photon mapping implementation, we only
only support estimation of the direct light contribu-
tions. In Jensen’s [6] original paper, indirect light
is also accounted for in the global photon map, and
also has a high-resolution caustics photon map. As
we discussed before, this might have made photon
mapping more useful and actually sped things up.
Additional effects such as depth of field and mo-

tion blur can be approximated with a distribution
raytracer such as those presented in Cook et al. [2].
The amount of additional work to integrate these
effects into mcrt are not huge, and give nice results.
Something which would be interesting to imple-

ment is a spectral raytracing extension, with support
for e.g. black-body radiation like shown in Zhang et
al. [1]. Instead of using RGB-channels for storing
radiance, the ray wavelength could have been stored
instead. Giving a more physically plausible render,
such as radiance affected by the temperature, chro-
matic aberrations, and thin film light interference.
Perhaps some sort of HDR (High-Dynamic

Range) technique, like tone mapping, would solve
the problem we get when our raytracer initially has
with dark scenes, before reaching full convergence.

For producing realistic scenes, realistic materials
are needed, and textures would have been a desirable
feature to have. A texture mapping technique for
triangle meshes isn’t that hard to implement, but
special care is needed when dealing with texture
filtering. Some OpenGL things we take for granted...
Finally, parallelization support is achieved with

OpenMP, but having support for additional hard-
ware accelerators would have been desirable.
OpenMPI would have been nice to have for speeding
up rendering in computer clusters. The other more
important addition which would have made a big
difference is to support massively-parallel graphics
hardware via APIs like OpenCL or CUDA, since the
raytracing problem easily adapts to MC raytracing.

If the reader of this report would like to add these
or other features to mcrt, feel free to open a PR :)

16

References
[1] J. C. Cecilia Zhang, Ashwinlal Sreelal. Spectral

ray tracing. 2016. [Online in November 2017].

[2] R. L. Cook, T. Porter, and L. Carpenter. Dis-
tributed ray tracing. In ACM SIGGRAPH
Computer Graphics, volume 18, pages 137–145.
ACM, 1984.

[3] R. L. Cook and K. E. Torrance. A reflectance
model for computer graphics. ACM Transac-
tions on Graphics (TOG), 1(1):7–24, 1982.

[4] Y. Fujii. A tiny improvement of the Oren-
Nayar reflectance model. 2015. [Online 2017].

[5] C. M. Goral, K. E. Torrance, D. P. Greenberg,
and B. Battaile. Modeling the interaction of
light between diffuse surfaces. In ACM SIG-
GRAPH Computer Graphics, volume 18, pages
213–222. ACM, 1984.

[6] H. W. Jensen. Global illumination using pho-
ton maps. Rendering methods, 96:21–30, 1996.

[7] J. T. Kajiya. The rendering equation. In ACM
Siggraph Computer Graphics, volume 20, pages
143–150. ACM, 1986.

[8] J. H. Lambert. Photometria sive de mensura
et gradibus luminis, colorum et umbrae. 1760.

[9] T. Möller and B. Trumbore. Fast, minimum
storage ray/triangle intersection. In ACM SIG-
GRAPH 2005 Courses, page 7. ACM, 2005.

[10] F. E. Nicodemus. Directional reflectance and
emissivity of an opaque surface. Applied optics,
4(7):767–775, 1965.

[11] M. Oren and S. K. Nayar. Generalization of
lambert’s reflectance model. In Proceedings of
the 21st annual conference on Computer graph-
ics and interactive techniques, pages 239–246.
ACM, 1994.

[12] K. E. Torrance and E. M. Sparrow. Theory for
off-specular reflection from roughened surfaces.
Josa, 57(9):1105–1114, 1967.

[13] T. Whitted. An improved illumination model
for shaded display. In ACM Siggraph 2005
Courses, page 4. ACM, 1980.

17

	Introduction
	Global Illumination
	Rendering Equation
	Radiosity
	Whitted Raytracing
	Path Tracing
	Photon Mapping

	Theory and Method
	Scene Description
	Ray-Surface Intersections
	Parametric Sphere
	Triangle Polygon
	Triangle Mesh

	Surface Properties
	Lambertian Model
	Oren-Nayar Model

	Direct Light Contributions
	Point Light Source
	Area Light Source
	Monte Carlo Method

	Indirect Light Contributions
	Specular Reflection
	Specular Refraction
	Diffuse Reflection
	Russian Roulette

	Photon Mapping
	Gathering Photons
	Radiance Estimate

	Anti-Aliasing & Sampling

	Results and Benchmark
	Discussion and Outlook

