
Behaviour Tree Evolution by Genetic Programming
– Learning Novel Bot Behaviours in a 2D Top-Down Arena Shooter –

Martin Estgren <mares480@student.liu.se>
Erik S. V. Jansson <erija578@student.liu.se>

Linköping University, 12th November 2017

Abstract
Behaviour trees are a popular model for representing
the decision-making and plan execution process for
NPCs in video games. These are built by hand,
and often require expertise to craft into interesting
and intelligent behaviours. These types of behaviour
trees usually don’t adapt well to new environments,
and need many tailor-made trees for each situation.

In this paper we demonstrate how to generate the
trees by using genetic programming; allowing us to
essentially evolve novel behaviours automatically in
our testbed. Instead of specifying low-level actions
and conditions, we use high-level definitions. This
leads to faster fitness convergence, and allows us to
skip the bloat control and tree pruning steps used
by other similar behaviour tree evolution methods.
Results show that the evolved trees reliably defeats
our hand-crafted behaviours by the 25th generation.

Contents
1 Introduction 1

1.1 Proposed Approach 2
2 Background Theory 2

2.1 Behaviour Trees 2
2.2 Path Finding with A* 3
2.3 Genetic Programming 4

3 Implementation Details 4
3.1 Game Architecture 5
3.2 Behaviour Trees 6
3.3 Genetic Programming 7

4 Results and Screenshots 8
4.1 Generated Behaviours 9
4.2 Behaviour Fitness 10
4.3 Survival Ratio 11

5 Discussion and Outlook 12

1 Introduction
In interactive media such as video games, there
is often a need for simulating seemingly complex
agent behaviours in (soft) real-time. In a modern
fast-paced computer game for example, the render,
physics and artificial intelligence updates all need
to complete in a total of less than 16ms to provide
a half-decent experience. These resource constraint
have spawned some very clever techniques to enable
complex behaviours for autonomous agents while
minimizing their required computational time.

These techniques often require the bot behaviours
to be manually defined, and in some cases, are quite
hard to extend when new behaviours are needed
later in the game development process. This has
been shown to be true by industry researchers, such
as Dawe et al [4], regarding the finite state machine
architecture (which we talk more about later).

In this project we have explored how one of the
more widely used techniques, behaviour trees, can be
extended to allow for not only hand-crafted complex
behaviours, but for organic behaviours, tailored to
the specific game domain by using a reinforcement
learning approach. More specifically, we evolve the
behaviour trees by using genetic programming. It’s
by no means a novel approach, but there still has
been relatively little research in the area. In our
behaviour evolution algorithm, based on the work of
Ögren et al. [3], we instead use high-level behaviours,
which removes the need for bloat control or pruning.
Leading to a simpler algorithm than Ögren et al. [3].

Alongside the proposed method in Section 1.1, a
testbed consisting of a top-down arena shooter was
built. It features a sufficiently complex environment
to support interesting behaviours by the enemy bot.
We describe the features of our testbed in Section 4.

1

mailto:mares480@student.liu.se
mailto:erija578@student.liu.se

This report starts off in Section 2 by giving a
brief overview of the relevant techniques and related
work necessary to follow our reasoning and findings.
In Section 3 we describe the details needed to im-
plement these techniques in practice, along with
the testbed architecture we’ve used. This gives the
reader information on any peculiarities and pit-falls.
We follow this by showing in Section 4 the testbed,
and give some generated offspring generated by our
method along with measurements of its efficiency.
Finally, we reflect on our method, giving downsides,
and present some possible future work in Section 5.

1.1 Proposed Approach
Apply genetic programming to the behaviours trees
by creating high-level actions and conditions nodes.
Ideally this should allow for faster convergence rates
and somewhat shallower generated behaviour trees,
eliminating the need for bloat control and pruning.
Since BTs are trees, themutation mechanism should
modify control-flow structure and leaf-node settings,
while the crossover mechanism will swap sub-trees.

2 Background Theory
For an autonomous agent to give the illusion of be-
ing intelligent, many different systems need to inter-
act with each other. In this chapter we describe the
theory behind our three primarily used techniques:
behaviour trees, path finding, genetic programming.
There are entire books written on these techniques,
hence we’ll only describe each of these superficially,
if you want a deeper treatment, see our references.

2.1 Behaviour Trees
Defining an accurate automatic planner model is
often impractical and usually overkill for real-world
applications. Especially in games, where very simple
models are enough to give the illusion of intelligence.
In games, the most well-known behaviour selection
algorithms are FSMs, GOAPs, HTNs and BTs [4].

Finite State Machines (FSMs) are simple but
hard to extend with additional states, resulting in an
exponential increase of transitions [4]. While both
GOAP (Goal-Oriented Action Planner) and HTN
(Hierarchical Task Network) are powerful models,

these don’t allow agents to explore new task defini-
tions, and “only” provide an agent with novel ways
of solving an already defined set of tasks. Planning
has seen some use in the games industry. Most no-
tably in the game F.E.A.R [11] where adversarial
agents used a planning system to combat the player.
Behaviour Trees (BTs) on the other hand, when

comparing to FSMs, provide advantages in terms of
modularity, reactiveness and scalability. And more
importantly, since they are a type of tree, allow for
integration with the genetic programming approach.
They were first popularized in Halo 2 [7], but are
now applied in other area as well, such as robotics.
Behaviour Tree Evolution (BTE) is a technique

which uses some form of genetic programming on
BTs. It’s a relatively new technique that has been
applied to strategy games and platformers. Some of
the previous work is due to Lim et al. [8], Colledan-
chise et al. [3] and a recent thesis by Hoff et al. [6].
To our knowledge, our paper is the first to attempt
to apply BTE in a shooter game, and the first to
use high-level behaviours for a simpler algorithm.

In the Behaviour Tree Starter Kit [2] and in Chris
Simpson’s Gamasutra article [13], the BT is a tree-
like data structure which describes the decision-
making process of the agent. It’s evaluated pre-order
from the root of the tree, in each logic update tick.

Selector

Sequence Sequence

Invert Pick up health

Health > 0.5

Invert Pick up armor

Armor > 0.25

Figure 1: Example of Hand-Crafted Behaviour Tree

In the coming page you’ll find the most common
types of concrete nodes in a behaviour tree, in par-
ticular those found in the BTSK [2]. Only action
and condition nodes are leaf-nodes, and are concrete
nodes. All others are either composite or decorators
(abstract nodes), which need to be instantiated to
become concrete, such as the sequence or inverter ;
that have one/more children (it’s never a leaf node).

2

• Selector: executes children from left → right
until one child is found to be either running or
has already succeeded, and returns this status.
Otherwise, if none matches, it returns a failure.

• Sequence: executes children from left→ right
until one child is found to be either running
or failed, and returns this status. If all children
have succeeded, then set status to success.

• Inverter: executes the child node and inverts
the resulting state when it has finished running.

• Succeeder: when child has finished running,
returns success regardless of the child’s status.

• Condition: a leaf-node that queries the world
state, if the query returns true, we give success,
if it’s false, we instead give failure. This node
is usually instantaneous, and can’t be running.

• Action: a leaf-node which modifies the world
state, and returns success if the action had the
intended side-effect, failure if couldn’t complete
or failed the action and running if not done yet.

We find that it’s easier to understand behaviour
trees with an example. We’ll be using the tree in
Figure 1 as an example (it was produced within our
testbed using a Graphviz library for Java). The yel-
low nodes means the node state is running, the red
nodes have failed, and green nodes have succeeded.

At a high-level, this BT checks the agent’s health
and armour, and if it’s below a threshold, it will go
and pick up the crates which replenish these stats.
It does this by starting at the root node, selec-

tor, and executing the left child, the sequence. It
will execute its left child, which is the inverter. At
last we reach a leaf-node, the health condition node.
This will probe the world for the state of the agent,
and return success because we’ve found that it’s
above 50%. This result will propagate upward to
its parent, the inverter, which will set its state to
failed (inverting the result of the child). We’re back
at the left sequence, and because one of the children
have failed (the inverter), the sequence has failed as
well, and won’t run the right child (gray means the
node has never been evaluated). Finally, because
the selector’s left child has failed, we execute the
right branch too (remember, at least one child must
succeed!). We use the same steps as before, but get
stuck in “pick up armour” until that action has fin-
ished running in the world (has succeeded or failed).

2.2 Path Finding with A*
Agent path finding is done using the A* graph
traversal algorithm proposed by Peter E. Hart, Nils
J. Nilsson, and Bertram Raphael [5] as an extension
to Dijkstra’s algorithm which, given an admissible
heuristic and non-negative costs, will find the path
from a node n0 to a node ng, with the lowest cost.
Calculating the expected cost of a path n0 →

nk → ng, from n0 to ng via nk can be done with
the following path finding cost function:

f(nk) = g(nk) + h(nk)
where g(nk) is the true cost from n0 to nk and h(nk)
is a heuristic approximation of the cost from nk to
ng. This allows us to explore the potentially most
optimal paths first before considering the others.
In this project, the Euclidean distance is used

as the heuristic h(nk). This, since the path finding
is performed in a search-space where each node is
defined as a point in the testbed’s 2-D world-space.
Additionally, compared to regular A*, the path-

finder utilizes an influence map to help the agent
avoid “suicidal paths”, even if the selected path is
optimal given the heuristic function. Our influence
map, like the ones shown in Dave Mark [9], take into
account the visibility of each node in relation to the
adversarial game agents’ line-of-sight, and therefore
updates the expected cost as:

f(nk) = g(nk) + h(nk) + i(nk)
where i(nk) is the cost introduced by the influence
map. This gives the the result that nodes within the
adversarial agent’s line-of-sight have a much higher
associated traversal cost, and should be avoided.

Figure 2: optimal path Figure 3: tactical path
Above are two example figures: Figure 2 shows

an optimal path using regular A*, and the other,
Figure 3 shows the optimal path when taking into
account the influence map; sneaking behind cover.

3

2.3 Genetic Programming
In many scenarios you try to optimize a function:
f(x0, x1, ..., xn), where some or all of the inputs
are of a discrete nature (ordinal or nominal values).
These types of problems are often hard to optimize
using techniques developed for continuous variables,
such as gradient ascent/descent, e.g. in a perceptron.
Genetic programming is a technique that was in-

troduced by Barricelli et al [1], as a way to optimize
computer programs by encoding the parameters to
be optimized as genetic representations which could
be processed by traditional evolutionary algorithms.

Figure 4: The genetic representation is often done
using a tree-like structure in genetic programming.
Image is taken from: Wikipedia (public domain).

The most general form of the evolutionary algo-
rithm can be described in the following steps:
1. Generate an initial population by creating a

initial pool P0, of individuals with randomized
genetic representations (context-specific data).

2. Evaluate the fitness for each individual xi ∈ Pt.
This usually requires a domain-specific fitness
function: f(xi) → fi ∈ R, which will be de-
scribed in further details later in this chapter.

3. Remove individuals with poor low fitness score
and regenerate population pool: Pt+1 = Φ(Pt).

The fitness function for this project is composed
of a linear combination of desirable behaviours
collected during the fitness evaluation simulation,
such as, amount of damage dealt to the adversary,
whether the agent with a specific BT survived, and
how many weapons the agent has picked-up. In the
implementation section we’ll specify fi more con-
cretely, for now we just explain the general theory
behind genetic programming and how to find Pt+1.

Regeneration of the population pool for the next
generation, Pt+1, is done using the three functions:

Selection Φs(Pt)→ xi ∈ Pt individuals with
high fitness score in the new population Pt+1. In
this project, selection is done proportionally to the
fitness score for each individual. Each individual xi

has a probability P (xi|fi) to be selected for the next
generation Pt+1 according to some random process.

P (xi|fi) = fi∑N
j=1 fj

where N = |Pt|

Crossover Φc(xi, xj) → x̂i, x̂j individuals
from the new population which have been crossed
over, in the case of genetic programming, crossover
is done by swapping random sub-trees in each BT.
All sub-trees have an equal probability of being se-
lected to crossover, creating new individuals in Pt+1.

Mutation Φm(xi) → x̂i a subset of the new
population, but slightly tweaked with a random pa-
rameter or by adding/removing random child nodes.
If no mutation is done, then the genetic program-
ming might converge to some local optima because
of monoculture, and never reach a global optimum.

Once these steps have been performed, a new
generation of individuals have been produced, which
can then be used to repeat the optimization process
until we converge to a population with behaviours
close the global maximum of the fitness function fi.

3 Implementation Details
After presenting these theoretical methods we’ll now
describe the additional changes necessary to make
these work in practice (as per our implementation).

Both the top-down shooter game (target testbed)
and our behaviour tree evolution (the technique) are
written in Java and use libGDX for graphics/audio.
This has allowed us to quickly produce a prototype,
and while the game itself isn’t the main topic of this
paper, a rough outline can be found in Section 3.1.

Every entity in the game can be transformed into
an intelligent agent with a BotInputComponent,
which associates a given behaviour tree with a entity.
It hooks together with the path finder to enable the
entity to traverse & interact with the environment.
With GP, additional BTs can be generated and used.

4

https://upload.wikimedia.org/wikipedia/commons/7/77/Genetic_Program_Tree.png

3.1 Game Architecture
Given the very limited implementation time of this
project, the architecture of the game was designed
to allow for fast prototyping iterations, and isn’t
necessarily based on strong and scalable software
design philosophies. The structural design is based
on the entity component system design, which has
seen high use in the contemporary games industry
and is being used in high-profile projects such as the
Unity game engine. The primary reference imple-
mentation is taken from the book Game Program-
ming Patterns written by R. Nystrom [10] remixed
with the component system from M. Boströms’
Speed Coding Zelda1. The resulting implementa-
tion can be seen in the source code in the package:
se.sciion.quake2d.level and its sub-folders.

An entity component system (E-C-S), as the name
might suggest, consists of three interacting class
types. The entity, the component, and the system.
The entity is defined as a class consisting of a

series of components, together with functions for
querying information about the entities’ compo-
nents. This allows the entities’ components to query
their parent (the entity itself) regarding other com-
ponents within this entity. Meaning, components
that heavily depend on each other have high cou-
pling, while independent components don’t have any
coupling. This gives us a very modular design, and
gives the expressive power to easily add new compo-
nents to an entity on-the-fly. There are several other
ways to solve the problem of system-system commu-
nication, like message-passing, but we’ve decided to
take the “easy way out” and just pass references
around to the relevant objects.

In Figure 5 are the three different types of entities
in our game: user-controlled players, AI-controlled
agents and health/armour/weapon crate pickups. As
can be seen, adding functionality to each entity is
just a matter of adding/swapping a component. The
only difference between a player and an agent is the
method of input, UserInput vs BotInput, which in
our opinion perfectly shows the benefits of a E-C-S.

The BotInputComponent has a behaviour tree
which is updated with tick, which executes the mo-
tions specified in the current target path (basically
a stack of locations to visit to reach the target loca-
tion) which were decided by the behaviour tree.

1https://github.com/MilleBo/
SpeedCodingZelda

Figure 5: List of Components in Entity

Outside the entity, a set of systems are running,
which manage inter-entity communication such as
path-finding, physics, and gameplay. As we touched
upon before, these systems are passed as references
to the components that are interested in them, al-
lowing for the components to decide what to do
with the data provided by the systems without car-
ing about the system’s implementation details.

Figure 6: Visualization of the path finding stack F .
If there are no obstacles in the way (line-of-sight
check), the agent takes a straight-line path instead.

5

https://github.com/MilleBo/SpeedCodingZelda
https://github.com/MilleBo/SpeedCodingZelda

3.2 Behaviour Trees
Inside of se.sciion.quake2d.ai.behaviour
you’ll find the implementation of our BTs. They are
specified using inheritance, as in the figure above. In
our variant, only the leaves above are non-abstract.

All are derived from the BehaviourNode, which
provides the State, and methods for updating states,
by evaluating it and its children (if it has any). This
is done with the tick function, which is called for
each agent’s behaviour tree and once for each frame.

Algorithm 1 Pseudo-Code for the BT’s Tick Step
Require: some initial State to the behaviour tree

if State 6= Running then
doBehaviourEnter()

end if
State← doBehaviourUpdate()
if State 6= Running then

doBehaviourExit()
end if

Each of these entities’ behaviour tree are built
from the bottom-up and linked. There is only one
root node which needs to be evaluated, since it will
recursively evaluate all it’s children when requested.

The standard non-leaf nodes are implemented in a
straight-forward way following Section 2.1. Instead,
we continue by explaining the actions & conditions
we have implemented, and how these communicate
with the other systems to be able to query the world.

We’ve adopted a fairly simple solution, where the
leaf-node is given a reference to systems that it

wants to communicate with, and the entity owner.
For example, if a BT wants a AttackNearest node

beneath a Succeeder, we’d first have to hand over
a reference to the path finder and a target tag to
the node’s constructor, such as: AttackNearest(path-
finder, tag). Only after that are we allowed to exe-
cute: SucceederNode(attack-nearest), which we can
utilize to construct the next parent layer above it.

Below is a list of all actions and conditions we’ve
implemented in our game, along with a description:

• AttackNearest(tag): finds the closest entity
with tag and path find to it. Shoot with weapon.
Success if we were able to fire, false otherwise.

• MoveToNearest(tag): finds the close entity
with tag and path find to it. Stops when close.
Success when we’re close, fails if no valid path.

• PickUpConsumable(type): finds the closest
consumable of type (health, armour and boost),
path find to it and pick it up. Fails if it couldn’t.

• PickUpWeapon(type): finds a close weapon
of type (shotgun, rifle & sniper). Path find to
it & try to pick it up. Succeeds when picked up.

• CheckStatus(ratio, type): checks the entity
owner’s status (health or armour), and returns
Success if above the ratio, or fail if its below.

• CheckWeapon(type): checks entity owner’s
inventory for weapon type. Success if we got it.

• CheckDistance(tag, r) checks if entity with
tag is above r units away. Succeeds query if so.

6

3.3 Genetic Programming
Since the genetic programming has to be done on
the trees during runtime, we need a way to dynam-
ically generate trees with varying structure (chang-
ing composite nodes) and behaviours (changing leaf
nodes). The solution used in this project is to create
a set of prototype behaviour nodes S, one for each
node type. This set can then be used to create the
trees by building them from the root. The proto-
types are implemented using the prototype design
pattern as presented by R. Nystrom [10], meaning,
we have a set of correctly pre-specified instances
which are then cloned & modified to suit our needs.

Tree Generation

Each tree starts by first generating a random node
n ∈ S as the tree root, and if the node is a composite,
continue recursively until a complete tree is formed.
All nodes have a randomization function which

for each node type randomizes it in different ways.
Leaf nodes have a trivial randomization function
which only tweaks parameters such as thresholds
(e.g. 0.5 or 0.2) and game tags (e.g. player or crate).

r(n)→ n̂

is the randomization function for leaf node n to n̂.
Composite nodes C = {n0, ..., ni} are randomized

recursively. First we randomize the set of children:
Cr = {n0, ..., nm}, n ∈ C and Ca = {n0, ...nj}, n ∈ S.
C is then redefined as C = (C ∪ Ca)/Cr, adding the
set Ca and removing the nodes in the set Cr. Once
this is done, each child nodes’ respective randomize
function is called:

r(C)→ ∀xr(n), x ∈ C

is a randomization for the composites’ children n.

Tree Mutation

As with tree randomization, the mutation of trees
is done in a recursive manner, where each node
mutates itself, and in the case of composite nodes
its children. The mutation only differs from the
tree randomization in that nodes are only slightly
changed with a certain probability, whereas the ran-
domization can completely change all nodes in a
tree. In Figure 7 you can see leaf-node mutation in
action, and in Figure 8 the mutation of composites.

Figure 7: Example of Mutation for the Leaf Node

Figure 8: Example of Mutation for Composite Node

Tree Crossover

During tree crossover, the tree is flattened to a list.
This enables us to easily select two random nodes
uniformly from two different trees, and swap them.

Figure 9: Example of crossover between two trees.

Fitness Function

As alluded in the theory section, the fitness function
fi is defined as an arbitrary linear combination of
game related parameters. The full implementation
is described in pseudo-code on the next page.

7

Algorithm 2 Pseudo-Code for the fitness function
Require: damage being the damage given
Require: armor being the armour picked-up
Require: weapon to be the weapons picked-up
Require: kills to be the number of agents killed

Score = 5 ∗ damage + 2 ∗ armor + 50 ∗weapon
+ 1000 ∗ kills
if Individual Won then

return Score + 500
else

return Score
end if

The score is divided by the number of round each
individual has played during a generation. This al-
lows for a given individual to test its fitness against
multiple adversaries to get a better estimated fit-
ness, a useful detail when fitness evaluation is done
against other peers from the same generation.

4 Results and Screenshots
Below are a couple of in-game screenshots from
Quake 2D, our testbed for behaviour tree evolution.
Here we’ve chosen to show two bots playing against
each other in the arena, each of them loaded with a
basic hand-made behaviour tree shown in Figure 12.
As can be seen in Figure 10, the environment is

composed of static collidable walls, dynamic pick up
crates, user/agent controlled players, and graphical
scenery details based on tiled textures. Maps are
specified using the Tiled editor, which means we
can build new environments to test our solution.
We’ve created a serializer for our behaviour trees,
that enables us to save/load behaviour trees to disk.
Additionally, we’ve developed several tools for

showing our agent’s behaviour in real-time. As can
be seen, Figure 11, we’re able to visualize path find-
ing information for the intelligent agents. Here the
yellow line is the target path specified by the path
finding system given a target location (shown as a
yellow cross) by the behaviour tree. In this exam-
ple, the target is the rifle pickup crate. You’ll see
a coloured grid being displayed. This tells us some-
thing about the state of the influence map, where
the blue and red lines are grids that each agent is
able to shoot towards, while magenta lines are loca-
tions where both agents are able to shoot towards.

Figure 10: Screenshot of a Bot vs Bot in Quake 2-D

For debugging and analysing agent behaviour,
we’ve implemented a way to visualize BTs, the one
in Figure 12 from the Figure 11 situation, in real-
time by using a Graphviz2 library. It opens in a
separate window and runs in another thread, where
we can see instant changes in the BT’s nodes’ state.

Figure 11: Screenshot of Path Finding in Quake 2-D
2https://github.com/nidi3/graphviz-java

8

https://github.com/nidi3/graphviz-java

Selector

Sequence Sequence Sequence

Invert Pick up health

Health > 0.5

Invert Pick up armor

Armor > 0.25

Succeed Succeed Move to player Attack player

Selector

Sequence Sequence

Distance to player < 5.0 Invert Pick up shotgun

Has shotgun?

Distance to player < 15.0 Invert Pick up rifle

Has rifle?

Pick up damage

Figure 12: Hand-Crafted BT (Larger in Appendix)

We’ve uploaded a video3 of our solution in action.
Finally, we present the results from our solution.

After generating fifty random individuals for P0, we
applied genetic programming until we had P50, the
resulting pool of evolved behaviour trees. The fitness
for each individual in each generation was found by
having a match against our crafted behaviour tree,
and recording match statistics, used to calculate fi.

We’ve attempted to evaluate individuals in a gen-
eration by pitting them against other individuals
in the same generation (we call them peers below).
Therefore two results will be presented, one where
the fitness fi is evaluated against our hand-crafted
tree and one against its peers in the same generation.

In Section 4.1 we provide two behaviour trees
generated with our solution at P50 when playing
against hand-crafted behaviour trees. We then give
in Section 4.2 graphs of the evolution of the fitness
function per generation, for both the peer and the
hand-crafted evaluation methods from P0 up to P50.
In Section 4.3 we measure the effectiveness of the
behaviour tree by looking at the amount of individ-
uals in the generation that have survived against
our hand-crafted behaviour trees as the number of
generation progresses forward.

4.1 Generated Behaviours
Each fitness evaluation was performed on a ran-
domly selected hand-crafted level to prevent the
behaviour trees getting overfitted to a specific level.

Figure 13: Generated tree with a very high fitness
score (4750). This behaviour tree is 15 levels deep.

3https://vimeo.com/242262802

As can be seen in the image above. This tree is
way too big to provide any significant insight, unless
interactively evaluated during run time. Therefore
we’ve chosen not to provide a scaled-up variant of
it. The fitness score is very close to the limit for the
levels used during the fitness evaluation.

Here we see an example of a behaviour tree that
is quite bloated, which is something we wanted to
avoid with our method. But it seems after many
generations the trees tend to crossover big sub-trees.

While the depth of this tree is unsatisfactory, the
performance it achieves against our hard-coded bot
is quite good. It is able to consistently beat it on all
different map arenas. In fact, it’s actually hard for
even the authors of this paper to beat it consistently.

Figure 14: Generated tree with high fitness (3650).
This tree on the other hand is only fours levels deep.

Here is a smaller tree of the same generation in
Figure 14, it manages to defeat the hard-coded bot
on all levels without bloating to unmanageable size.
Prior exploration of generated trees indicated that
as long as the tree has a sequence of pickup shotgun
and attack player, it would reach a fitness of around
1000. Because this kind of sub-tree is quite common,
it tends to appear in many BT crossovers.

Since this behaviour tree is a lot smaller, it’s quite
easy to analyse the expected behaviour in compari-
son to the one in Figure 13. At the end of this paper
we’ve therefore provided a scaled-up version of this
tree so the reader can look through it in more detail.

9

https://vimeo.com/242262802

4.2 Behaviour Fitness
Looking at the general fitness over generations, we can observe that once the behaviour trees routinely
starts defeating its adversary, the mean fitness plateaus and the variance fills the entire range of possible
fitness values. When evaluating each tree against random peers, we see something similar but it converges
with a slower rate. One possible hypothesis of why this happens is that the amount of “junk” behaviours
that get by in Figure 16 at the start are all low-performing BTs. Therefore, there is no real competition at
the start until one of them gets a good mutation or crossover. After that, this better BT will very likely
pass on its genes onto the next generation and generate a lot better BTs than before. In our hard-coded
behaviour tree, this happens quickly because the competition at the start is already quite high.

Figure 15: Fitness over generations when evaluating against a hard-coded bot. Higher score is better.

Figure 16: Fitness over generations when evaluating against 2 random peers. Higher score is better.

10

4.3 Survival Ratio
In the ideal case, the survival rate follows as a consequence of the fitness score. In the two figures below
we can see the same trend as in the fitness, the higher the fitness, the higher the survival rate. If this
wasn’t the case, our fitness evaluation wouldn’t provide a good metric for evaluating combat performance.
When playing against the hard-coded behaviour tree, it takes around 25 generations until 70% of the
individuals in the population are victorious against it. These results then seem to vary between 60% and
90% win-ratio in each generation. On the other hand, when playing against itself, it takes around 28
generations until the same can be said about it. However, it’s actually able to achieve a high maximum
win-ratio, and has less variation between each generation, usually staying between 76% to 95% win-ratio.

Figure 17: Victories for each generation when evaluating against a hard-coded bot. Higher value is better.

Figure 18: Victories for each generations when evaluating against 2 random peers. Higher value is better.

11

5 Discussion and Outlook
There are still some areas in the project which merit
further analysis. We’ll start with the results section,
and see what we can extrapolate from the fitness
and survival scores. Afterwards, we look at some
limitations of our solution, compare it to related
work, and then end with some future improvements.

Convergence Rate
As can be seen in the plots in the result section, the
evolutionary algorithm converges to a high game
proficiency in just a couple of generations, and man-
ages to stay that throughout the evolution process.
The fact that it manages to do this may reflect

poorly on our skills as game designers. Since one
expects that the more complex behaviours that are
required to proficiently play the game, the more
generations it will take until it produces such well-
tuned behaviour trees. As we mentioned before, all
it takes to beat our hand-crafted behaviour trees
is to play very aggressively. And the evolved trees
which are generated clearly reflect this fact.

It can be viewed as the fitness function, tree mu-
tation, and pool of possible actions being well tuned
to the specific requirements of this project. Which
interpretation is correct is left to the reader.
A possible explanation to the different conver-

gence rates when evaluating against a hard-coded
tree or adversarial peers is the stochastic nature
of both level selection and the randomized adver-
sary. The adversarial peer should be much closer
in performance compared to the hard-coded tree.
Once the trees which can defeat the hard-coded bot
have been generated, additional fitness can only be
reached by overfitting to the given level. The trees
with peer evaluation on the other hand, can’t find
a solution on how to reliably defeat the enemy. The
adversary co-evolves with them which makes it very
hard to find a “holy-bullet” behaviour since almost
all individuals in the next generations will have it.

When tested against a human player the evolved
behaviours becomes very hard to defeat. Even for
behaviour trees with a fitness score of around 3000.
One of the reasons could have to do with the agent’s
superhuman accuracy when shooting, but it has to
do with how greedy the agent is when it comes to
pickups, sometimes it can play really safe, and keep
refilling it’s health and sometimes denying pickups!

Limitations
Since we decided to have high level actions, the
tree’s behaviour often appears clunky compared to
a human player. As an example, two bots might
decide to walk to the same health pickup when both
have a very low health instead of just shooting at
each other. Current fitness evaluation is bound to
the render thread, which severely limits the number
of evaluations that can be done during one second.,
the amount of actions, object types, and levels have
been fairly limited in this project to produce faster
results and ease debugging. This leads to the BTs
having a limited repertoire of behaviours.

Related Work
As we mentioned before, our genetic programming
solution was initially based on the work by Colledan-
chise et al. [3]. The solution proposed in the paper
did not pan out in our case since they use an selec-
tion heuristic during the mutation phase, allowing
for higher fitness increase over fewer generations.
The paper used primitive actions which would not
scale to the type of game used in this project with-
out very large behaviour trees. With this said, it
seems like low-level actions might produce more
“clutch” behaviours in this kind of fast-paced games.

Also, even though the behaviour tree in Figure 13
is not unusable in practice, it still became deep. The
bloat control and pruning steps in Ögren et al. [3]
might not have been such a bad idea. However, our
solution is algorithmically simple, and gives accept-
able results. Thus, we recommend starting simple,
and then follow Ögren et al’s. [3] steps when needed.

Future Work
Some improvements are to extract the behaviour
tree and genetic programming parts as an indepen-
dent library and to use heuristics during the cre-
ation of each new generation. To add additional
behaviours and mechanics to the project and have
it compete with itself instead of a hard-coded adver-
sary, which has been tested to some extent during
the project but not enough to yield interesting re-
sults. It would be good to run fitness evaluation in
headless mode and become physics independent.
If you are interested in our solution, feel free to

look at our code and apply some of the additions. 4

4Repository: https://github.com/sci10n/Quake2D

12

https://github.com/sci10n/Quake2D

References
[1] N. A. Barricelli et al. Esempi numerici di

processi di evoluzione. Methodos, 6(21):45–68,
1954.

[2] A. J. Champandard. The behaviour tree
starter kit. Game AI Pro, pages 73–91, 2014.

[3] M. Colledanchise, R. Parasuraman, and
P. Ögren. Learning behavior trees for
autonomous agents. arXiv 1504.05811, 2015.

[4] M. Dawe, S. Garolinski, L. Dicken, and
T. Humphreys. Behavior selection algorithms:
an overview. Game AI Pro, pages 47–60, 2014.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael. A
formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on
Systems Science and Cybernetics, 4(2):100–107,
1968.

[6] J. W. Hoff and H. J. Christensen. Evolving
behaviour trees: Automatic generation of ai op-
ponents for real-time strategy games. Master’s
thesis, NTNU Dept. of Info. Science, 2016.

[7] D. Isla. Managing complexity in the halo 2 ai
system. In Proceedings of the Game Developers
Conference, volume 63, 2005.

[8] C.-U. Lim, R. Baumgarten, and S. Colton.
Evolving behaviour trees for the commercial
game defcon. In European Conference on
the Applications of Evolutionary Computation,
pages 100–110. Springer, 2010.

[9] D. Mark. Modular tactical influence maps.
Game AI Pro, 2:343, 2015. [Online; 2017-11].

[10] R. Nystrom. Game programming patterns.
Genever Benning, 2014.

[11] J. Orkin. Three states and a plan: the ai of
fear. In Game Developers Conference, volume
2006, page 4, 2006.

[12] D. Perez, M. Nicolau, M. O’Neill, and
A. Brabazon. Evolving behaviour trees for the
mario ai competition using grammatical evolu-
tion. Applications of evolutionary computation,
pages 123–132, 2011.

[13] Simpson, Chris. Behavior trees for a.i. , 2014.

13

S
el

ec
to

r

S
eq

ue
nc

e
S

eq
ue

nc
e

S
eq

ue
n
ce

In
ve

rt
P

ic
k

up
 h

ea
lt

h

H
ea

lt
h

>
 0

.5

In
ve

rt
P

ic
k

up
 a

rm
o
r

A
rm

or
 >

 0
.2

5

S
uc

ce
ed

S
uc

ce
ed

M
ov

e
to

 p
la

ye
r

A
tt

ac
k

p
la

ye
r

S
el

ec
to

r

S
eq

ue
nc

e
S

eq
ue

nc
e

D
is

ta
n
ce

 t
o
 p

la
ye

r
<

 5
.0

In
ve

rt
P

ic
k

u
p

sh
ot

gu
n

H
as

 s
ho

tg
un

?

D
is

ta
nc

e
to

 p
la

ye
r

<
 1

5
.0

In
ve

rt
P

ic
k

u
p

ri
fl

e

H
as

 r
ifl

e?

P
ic

k
up

 d
am

ag
e

	Introduction
	Proposed Approach

	Background Theory
	Behaviour Trees
	Path Finding with A*
	Genetic Programming

	Implementation Details
	Game Architecture
	Behaviour Trees
	Genetic Programming

	Results and Screenshots
	Generated Behaviours
	Behaviour Fitness
	Survival Ratio

	Discussion and Outlook

